关于缺失值(missing value)的处理

在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理。

首先需要说明的是,numpy的数组中可以使用np.nan/np.NaN(Not A Number)来代替缺失值,对于数组中是否存在nan可以使用np.isnan()来判定。

使用type(np.nan)或者type(np.NaN)可以发现改值其实属于float类型,代码如下:

1
2
3
4
5
6
7
8
>>> type(np.NaN)
<type 'float'>
>>> type(np.nan)
<type 'float'>
>>> np.NaN
nan
>>> np.nan
nan

因此,如果要进行处理的数据集中包含缺失值一般步骤如下:

1、使用字符串'nan'来代替数据集中的缺失值;

2、将该数据集转换为浮点型便可以得到包含np.nan的数据集;

3、使用sklearn.preprocessing.Imputer类来处理使用np.nan对缺失值进行编码过的数据集。

代码如下:

1
2
3
4
5
6
7
8
9
10
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> X=np.array([[1, 2], [np.nan, 3], [7, 6]])
>>> Y=[[np.nan, 2], [6, np.nan], [7, 6]]
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> imp.transform(Y)
array([[ 4.        2.        ],
       [ 6.        3.66666667],
       [ 7.        6.        ]])

上述代码使用数组X去“训练”一个Imputer类,然后用该类的对象去处理数组Y中的缺失值,缺失值的处理方式是使用X中的均值(axis=0表示按列进行)代替Y中的缺失值。

当然也可以使用imp对象来对X数组本身进行处理。

通常,我们的数据都保存在文件中,也不一定都是Numpy数组生成的,因此缺失值可能不一定是使用nan来编码的,对于这种情况可以参考以下代码:

1
2
3
4
5
6
7
8
9
10
11
12
>>> line='1,?'
>>> line=line.replace(',?',',nan')
>>> line
'1,nan'
>>> Z=line.split(',')
>>> Z
['1', 'nan']
>>> Z=np.array(Z,dtype=float)
>>> Z
array([  1.,  nan])
>>> imp.transform(Z)
array([[ 1.        3.66666667]])

上述代码line模拟从文件中读取出来的一行数据,使用nan来代替原始数据中的缺失值编码,将其转换为浮点型,然后使用X中的均值填补Z中的缺失值。

关于缺失值(missing value)的处理---机器学习 Imputer的更多相关文章

  1. Sklearn 与 TensorFlow 机器学习实战—一个完整的机器学习项目

    本章中,你会假装作为被一家地产公司刚刚雇佣的数据科学家,完整地学习一个案例项目.下面是主要步骤: 项目概述. 获取数据. 发现并可视化数据,发现规律. 为机器学习算法准备数据. 选择模型,进行训练. ...

  2. 机器学习实战笔记(Python实现)-04-Logistic回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  3. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  4. 机器学习实践之Logistic回归

        关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

  6. 2-6 R语言基础 缺失值

    #缺失值 Missing Value > #NaN不可识别NA> x <- c(1,NA,2,NA,3) > is.na(x)[1] FALSE TRUE FALSE TRUE ...

  7. python 缺失值处理(Imputation)

    一.缺失值的处理方法 由于各种各样的原因,真实世界中的许多数据集都包含缺失数据,这些数据经常被编码成空格.nans或者是其他的占位符.但是这样的数据集并不能被scikit - learn算法兼容,因为 ...

  8. 机器学习算法( 五、Logistic回归算法)

    一.概述 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设 ...

  9. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

随机推荐

  1. 【luogu P1082 同余方程】 题解

    最近一直在学习数论,讲得很快,害怕落实的不好,所以做一道luogu的同余方程练练手. 关于x的同余方程 ax ≡ 1 mod m 那么x其实就是求a关于m的乘法逆元 ax + my = 1 对于这个不 ...

  2. 解决Storm 和yarn 8080 端口冲突

    本机装了Yarn和Storm后,启动Storm后,发现NodeMange无法启动,找了下没找着在哪修改.只好修改Storm的配置,在配置上添加 ui.port: "9999" 再启 ...

  3. maven pom 增加本地jar 依赖

    https://www.cnblogs.com/huhongy/p/7337280.html <dependency> <groupId>org.hamcrest</gr ...

  4. c#解析分析SQL语句

    最近总结了c#一般的功能,然后自己在博文中写了很多东西.主要是在用途上面.能够解决一些问题.现在分各个组件和方向写完了.主要的内容写了demo,也写了自己的项目组件和模型. 最后一个SQL分析.其实在 ...

  5. LeetCode 简单 - 最大子序和(53)

    采用动态规划方法O(n) 设sum[i]为以第i个元素结尾且和最大的连续子数组.假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以 ...

  6. springboot在yml配置文件中配置类的属性笔记

    首先建立一个简单的实体类,我这里以学生为例,并加上@Component和@ConfigurationProperties(prefix ="student")注解,其中prefix ...

  7. 【super vlan的配置】

    Super vlan的配置 一:根据项目需求搭建好拓扑图如下: 二:配置 1:由项目图进行理论分析:sw1属于三层交换,用于二层交换信息的转发;同时在sw1上可定义super vlan把sub vla ...

  8. 部署node api的二三事

    当接到node开发node api的时候,我就想用docker来部署,众所周知,node的版本更新迭代很快.很多以前需要babel后才能采用的方法正在不断被node 原生的支持.如果随便更换生产服务器 ...

  9. php-5.6.26源代码 - hash存储结构 - hash算法

    // zend_inline_hash_func 实现在文件“php-5.6.26\Zend\zend_hash.h” h = zend_inline_hash_func(arKey, nKeyLen ...

  10. 4.《python自省指南》学习

    前言   前面几篇博客我都是通过python自省来分析代码并试图得出结论.当然,仅仅通过自省能解决的问题有限,但遇到问题还是不自主的去用这个功能,觉得对于认识代码的含义还是有一定帮助的.而这些自省的知 ...