问题 A: 分数矩阵
题目描述
1/1 1/2 1/3
1/2 1/1 1/2
1/3 1/2 1/1
矩阵对角线上的元素始终是1/1,对角线两边分数的分母逐个递增。
请求出这个矩阵的总和。
输入
输出
样例输入
1
2
3
4
0
样例输出
1.00
3.00
5.67
8.83 这题就是一个规律题
#include<stdio.h>
int main ()
{
int n;
int i;
double sum;
while(scanf("%d",&n),n)
{
sum=;
sum+=n*;
for (i=;i<=n;i++)
{
sum+=1.0/i*(n-i+)*;
}
printf ("%.2f\n",sum);
}
return ;
}
用算法笔记上的写法时间超限了
#include<bits/stdc++.h> using namespace std;
struct Fraction
{
int up,down;//分子 分母
//Fraction(){}
Fraction(int _up=,int _down=):up(_up),down(_down){}
};
int gcd(int a,int b)
{
if(b==) return a;
return gcd(b,a%b);
}
Fraction reduction(Fraction result)//分数的化简
{
if(result.down<){//分母为负数,令分子和分母都变为相反数
result.down=-result.down;
result.up=-result.up;
}
if(result.up==) result.down=;//如果分子为0 分母为1
else{//约去最大公约数
int d=gcd(abs(result.up),abs(result.down));
result.up/=d;
result.down/=d;
}
return result;
}
int main()
{
int n;
while(scanf("%d",&n)==&&n!=){
Fraction s[n*n+];
for(int i=;i<=n;i++){
s[n*(i-)+i].up=;
s[n*(i-)+i].down=;
} for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i!=j){
if(j>i){
s[n*(i-)+j].down=s[n*(i-)+j-].down+;
s[n*(i-)+j].up=;
}
}
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(j<i){
s[n*(i-)+j].down=s[n*n+-n*(i-)-j].down;
s[n*(i-)+j].up=;
}
}
}
Fraction c;
c.down=s[].down;
c.up=s[].up;
for(int i=;i<=n*n;i++){
c.up=s[i].up*c.down+c.up*s[i].down;
c.down=s[i].down*c.down;
c=reduction(c);
cout<<c.up<<" "<<c.down<<endl;
}
printf("%.2f\n",1.0*c.up/c.down);
}
return ;
}
分数的四则运算就是我们正常的四则运算
问题 A: 分数矩阵的更多相关文章
- HDU_2156 分数矩阵
Problem Description 我们定义如下矩阵: 1/1 1/2 1/3 1/2 1/1 1/2 1 ...
- HDOJ(HDU) 2156 分数矩阵(嗯、求和)
Problem Description 我们定义如下矩阵: 1/1 1/2 1/3 1/2 1/1 1/2 1/3 1/2 1/1 矩阵对角线上的元素始终是1/1,对角线两边分数的分母逐个递增. 请求 ...
- [hdu2156]分数矩阵
Problem Description 我们定义如下矩阵:1/1 1/2 1/31/2 1/1 1/21/3 1/2 1/1矩阵对角线上的元素始终是1/1,对角线两边分数的分母逐个递增.请求出这个矩阵 ...
- HDU 2156 分数矩阵
http://acm.hdu.edu.cn/showproblem.php?pid=2156 Problem Description 我们定义如下矩阵:1/1 1/2 1/31/2 1/1 1/21/ ...
- 基于MapReduce的SimRank++算法研究与实现
一.算法应用背景 计算广告学(Computational Advertising)是一门广告营销科学,以追求广告投放的收益最大化为目标,重点解决用户与广告匹配的相关性和广告的竞价模型问题,涉及到自然语 ...
- 洛谷P1074 靶形数独(算竞进阶习题)
还是数独.. 比上一个多了个分数矩阵,其实没什么差别,但是数据好像水了许多... #include <bits/stdc++.h> #define INF 0x3f3f3f3f using ...
- 《TC训练赛一》题解!
以下题目标题就是此题题目链接,题目内容为了节省篇幅就不粘上去了.整套题的链接:https://acm.bnu.edu.cn/v3/contest_show.php?cid=8679#info 密码:7 ...
- 用深度学习做命名实体识别(七)-CRF介绍
还记得之前介绍过的命名实体识别系列文章吗,可以从句子中提取出人名.地址.公司等实体字段,当时只是简单提到了BERT+CRF模型,BERT已经在上一篇文章中介绍过了,本文将对CRF做一个基本的介绍.本文 ...
- LPAT: Learning to Predict Adaptive Threshold for Weakly-supervised Temporal Action Localization [Paper Reading]
Motivation: 阈值分割的阈值并没有通过模型训练学出来,而是凭借主观经验设置,本文通过与背景得分比较提取对应的proposal,不用阈值的另一篇文章是Shou Zheng的AutoLoc,通过 ...
随机推荐
- MR中简单实现自定义的输入输出格式
import java.io.DataOutput; import java.io.IOException; import java.util.HashMap; import java.util.Ma ...
- AngularJS 表格(带有CSS样式)
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- 读取静态的json文件
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- C++ vector用法积累
1. vector的初始化 2. vector基本操作 2.1 vector属性 size resize 2.2 vector操作 插入 在最后插入一个元素 push_back() 删除 在最后删除一 ...
- 重装系统后激活win10和office2016
激活win10: 重装的版本和电脑刚买来是的系统一样的话直接联网,过一段时间就会自动激活.如果不一样可以下载Kms工具激活. 激活office2016: 在开始菜单里双击“我的Office”,登录账号 ...
- Docker 入坑教程笔记
Docker 入坑教程笔记 视频网址B站:点这里 查询命令 man docker 简单启动和退出 docker run --name [容器名] -i -t ubuntu /bin/bash 交互启动 ...
- java后台去除JSON数组的重复值
假设原始Json数组是这样的 原始JSONArry:[{"Value":"15153129877","Key":"09770985 ...
- 4.2 执行环境及作用域【JavaScript高级程序设计第三版】
执行环境(execution context,为简单起见,有时也称为“环境”)是JavaScript 中最为重要的一个概念.执行环境定义了变量或函数有权访问的其他数据,决定了它们各自的行为.每个执行环 ...
- hadoop生态搭建(3节点)-04.hadoop配置
如果之前没有安装jdk和zookeeper,安装了的请直接跳过 # https://www.oracle.com/technetwork/java/javase/downloads/java-arch ...
- 插头DP(基于连通性状态压缩的动态规划问题)(让你从入门到绝望)
今天,我,Monkey king 又为大家带来大(ju)佬(ruo)的算法啦!--插头DP 例题(菜OJ上的网址:http://caioj.cn/problem.php?id=1489): 那么,这道 ...