tarjan算法和Kosaraju算法
tarjan算法和Kosaraju算法是求有向图的强连通分量的算法;
#include<iostream>
#include<cstring>
using namespace std;
int map[][],nmap[][];
int visit[];
int time1[];
int post[];
int n,m,num=,postid=;
void dfs(int id);
void ndfs(int id);
int main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int x,y;
cin>>x>>y;
map[x][y]=;
nmap[y][x]=;
}
for(int i=;i<=n;i++)
if(visit[i]==)
dfs(i);
for(int i=n;i>=;i--)
if(visit[post[i]]==)
{
ndfs(post[i]);
num++;
}
cout<<num<<endl;
return ;
}
void dfs(int id)
{
visit[id]=;
for(int i=;i<=n;i++)
if(visit[i]== && map[id][i])
dfs(i);
postid++;
post[postid]=id;
}
void ndfs(int id)
{
visit[id]=;
for(int i=;i<=n;i++)
if(visit[i]== && nmap[id][i])
ndfs(i);
}
Kosaraju算法模板
#include<cstdio>
#include<algorithm>
#include<string.h>
using namespace std; struct node
{
int v,next;
}edge[]; int DFN[],LOW[];
int stack[],heads[],visit[],cnt,tot,index; void add(int x,int y)
{
edge[++cnt].next=heads[x];
edge[cnt].v = y;
heads[x]=cnt;
return ;
} void tarjan(int x)
{
DFN[x]=LOW[x]=++tot;
stack[++index]=x;
visit[x]=;
for(int i=heads[x]; i!=-; i=edge[i].next)
{
if(!DFN[edge[i].v])
{
tarjan(edge[i].v);
LOW[x]=min(LOW[x],LOW[edge[i].v]);
} else if(visit[edge[i].v ])
{
LOW[x]=min(LOW[x],DFN[edge[i].v]);
}
}
if(LOW[x]==DFN[x])
{
do {
printf("%d ",stack[index]);
visit[stack[index]]=;
index--;
} while(x!=stack[index+]);
printf("\n");
}
return ;
} int main()
{
memset(heads,-,sizeof(heads));
int n,m;
scanf("%d%d",&n,&m);
int x,y;
for(int i=; i<=m; i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=; i<=n; i++)
if(!DFN[i])
tarjan(i);
return ;
}
tarjan算法模板
tarjan算法和Kosaraju算法的更多相关文章
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- mahout中kmeans算法和Canopy算法实现原理
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...
- 使用Apriori算法和FP-growth算法进行关联分析
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...
- 转载:最小生成树-Prim算法和Kruskal算法
本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...
- 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论
一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...
- 用Spark学习FP Tree算法和PrefixSpan算法
在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的角度介绍如何使用这两个算法.由于scikit-l ...
- 字符串查找算法总结(暴力匹配、KMP 算法、Boyer-Moore 算法和 Sunday 算法)
字符串匹配是字符串的一种基本操作:给定一个长度为 M 的文本和一个长度为 N 的模式串,在文本中找到一个和该模式相符的子字符串,并返回该字字符串在文本中的位置. KMP 算法,全称是 Knuth-Mo ...
- 最小生成树之Prim算法和Kruskal算法
最小生成树算法 一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决. Prim算法 ...
随机推荐
- truffle的调用nodeJs的问题
Truffle3.0集成NodeJS并完全跑通(附详细实例,可能的错误) 升级到Truffle3.0 如果之前安装的是Truffle2.0版本,需要主动升级到Truffle3.0,两者的语法变化有点大 ...
- python安装Django
现在有很多建站系统,很多都是基于php的,比如WordPress. 而Django 是老牌基于Python的CMS框架了,一直听说很强大,甚至曾经很红的Ruby On Rails都参考了它的很多概念, ...
- 测试理论--branch testing and boundary testing
1 branch testing 分支测试 测试代码的所有分支 2 boundary testing 测试 程序的限制条件
- Alpha项目冲刺(团队作业5)
团队成员 组 员 学号 朱世杰 211414141 曹晔宁 211306302 一.冲刺(7次 Scrum) [Alpha版本]冲刺阶段--Day 1 [Alpha版本]冲刺阶段--Day 2 [Al ...
- 【iOS开发】创建单例的两种方法
创建一个单例很多办法.我先列举一个苹果官方文档中的写法. [cpp] view plaincopy static AccountManager *DefaultManager = nil; + ( ...
- hbase表的写入
hbase列式存储给我们画了一个很美好的大饼,好像有了它,很多问题都可以轻易解决.但在实际的使用过程当中,你会发现没有那么简单,至少一些通用的准则要遵守,还需要根据业务的实际特点进行集群的参数调整,不 ...
- Cocoa & OS X & swift 4
Cocoa & OS X & swift 4 http://www.runoob.com/swift/swift-environment.html https://en.wikiped ...
- oracle默认查询当前表空间的数据 当夸空间查询时候 需要指定具体的用户空间
- P1404 平均数
题目描述 给一个长度为n的数列,我们需要找出该数列的一个子串,使得子串平均数最大化,并且子串长度>=m. 输入输出格式 输入格式: N+1行, 第一行两个整数n和m 接下来n行,每行一个整数a[ ...
- Java 如何正确停止一个线程
自己在做实验性小项目的时候,发现自己遇到一个问题:如何控制线程的"死亡"? 首先,如何开启一个线程呢? 最简单的代码: public class Main { public sta ...