(x/y) %mod =x*(y^(mod-2))%mod;

在算x,y的时候可以一直mod 来缩小

y^(mod-2)显然是个快速幂

#include <iostream>
#include <stdio.h>
#include <math.h>
using namespace std;
long long mod=1e++;
long long quick(long long n,long long m)
{
long long ans=;
while(m)
{
if(m%==)
ans=ans*n%mod;
m/=;
n*=n;
n%=mod;
}
return ans;
}
int main()
{
int n,m;
cin>>n>>m;
int mu=m+n-;
long long ans_mu=;
long long ans_zi=;
for(int i=m+n-;i>m-;i--)
ans_zi=ans_zi*i%mod;
for(int j=;j<=n-;j++)
ans_mu=ans_mu*j%mod;
long long tep=quick(ans_mu,mod-);
cout<<ans_zi*tep%mod<<endl;
return ;
}

法二:递推

mp[i][j]=mp[i-1][j]+mp[i][j-1]

#include <bits/stdc++.h>
#define MAXN 1010
#define ll long long
using namespace std; ll mp[MAXN][MAXN];
const ll mod=1e9+; int main(void){
int m, n;
scanf("%d%d", &n, &m);
for(int i=; i<n; i++){
mp[i][]=;
}
for(int j=; j<m; j++){
mp[][j]=;
}
for(int i=; i<n; i++){
for(int j=; j<m; j++){
mp[i][j]=mp[i-][j]+mp[i][j-];
if(mp[i][j]>mod){
mp[i][j]%=mod;
}
}
}
printf("%lld\n", mp[n-][m-]);
return ;
}

51Nod 1118 机器人走方格--求逆元的更多相关文章

  1. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  2. 51nod 1118 机器人走方格

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. 收起   输入 第1行,2个数M,N,中间用空格隔开 ...

  3. (DP)51NOD 1118 机器人走方格

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.( ...

  4. 51nod 1118 机器人走方格【dp】

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. 收起 输入 第1行,2个数M,N,中间用空格隔开.( ...

  5. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  6. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  7. 51Nod——N1118 机器人走方格

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0  ...

  8. 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...

  9. 51nod 1120 机器人走方格 V3

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...

随机推荐

  1. LINQ查询操作符

    ·First - 返回集合中的第一个元素:不延迟 ·FirstOrDefault - 返回集合中的第一个元素(如果没有则返回默认值):不延迟 ·Last - 返回集合中的最后一个元素:不延迟 ·Las ...

  2. 北京Uber优步司机奖励政策(3月25日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. win10 无法修改默认程序 默认打开方式的解决方法

    此时是2018年11月24日 win10 pro 64位 版本是1803  具体版本号是17134 情景: 我的状况是.json文件的默认打开方式被新安装的应用霸占了,然后无论是通过“右键-属性-更改 ...

  4. VS2010安装MVC3出错

             开始已经在电脑上安装了VS2010以及SP1,还装了MVC4的相关升级包.最后项目中又要用MVC3,然后又去安装MVC3的安装包,但是在安装的过程就出现了问题.一直安装不成功,最后在 ...

  5. 手把手教你玩转CSS3 3D技术

    手把手教你玩转 CSS3 3D 技术   要玩转css3的3d,就必须了解几个词汇,便是透视(perspective).旋转(rotate)和移动(translate).透视即是以现实的视角来看屏幕上 ...

  6. facebook hash key

    private void printHashKey() { try { PackageInfo info = getPackageManager().getPackageInfo( "xxx ...

  7. Android2.2以上的版本HttpURLConnection.getContentLength()获取的size跟下载下来的file的legth不相等

    2.2以上的版本下载网络资源不完整无法更新.HttpURLConnection.getContentLength()获取的size跟下载下来的file的legth不等. 原因是:HttpURLConn ...

  8. 正则表达式 Pattern和Matcher

    java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包. 1.简介:  java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包. ...

  9. HDU 3699 A hard Aoshu Problem(暴力枚举)(2010 Asia Fuzhou Regional Contest)

    Description Math Olympiad is called “Aoshu” in China. Aoshu is very popular in elementary schools. N ...

  10. laravel 学习随笔(一)

    1.路由参数:路由参数总是通过花括号进行包裹,参数在路由被执行时会被传递到路由的闭包.(路由参数不能包含“-”字符,如有需要可以用“_”代替):