这题其实就是不断地合并子树,跟前面例一的思想是一样的。

这个打法我觉得非常优美啊(学别人的),为什么要搞lim1和lim2呢?

是因为在区间lim1~lim2之外的都是没有用的,但是我们f[h][sum][rem]里存的是一棵完整的h层的树,所以被lim1和lim2限制的就不存进去了。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long LL;
const LL N=;
LL l,r,K;
struct node{
LL a,b;
bool bk;
node()
{
bk=;a=;b=;
}
}f[][N][N];
LL dl[],dr[]; void mercy(node &x,node y){x.a+=y.a;x.b=y.b;} node dp(LL h,LL sum,LL rem,LL lim1,LL lim2)
{
node ans;
ans.a=;ans.b=rem;
if(f[h][sum][rem].bk && !lim1 && !lim2) return f[h][sum][rem];
if(h==)
{
if(sum+rem>=K) ans.a=,ans.b=;
else ans.a=,ans.b=sum+rem;
}
else
{
LL x=lim1 ? dl[h] : ;
LL y=lim2 ? dr[h] : ;
for(LL i=x;i<=y;i++)
{
mercy(ans,dp(h-,sum+i,ans.b,(lim1&(i==x)),(lim2&(i==y))));
}
}
if(!lim1 && !lim2) f[h][sum][rem]=ans,f[h][sum][rem].bk=;
return ans;
} int main()
{
freopen("a.in","r",stdin);
freopen("me.out","w",stdout);
scanf("%lld%lld%lld",&l,&r,&K);
LL x;
memset(dl,,sizeof(dl));
memset(dr,,sizeof(dr));
x=;while(l) {dl[++x]=l%;l/=;}
x=;while(r) {dr[++x]=r%;r/=;}
printf("%lld\n",dp(,,,,).a);
return ;
}

【sgu390】数位dp的更多相关文章

  1. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

  2. bzoj1026数位dp

    基础的数位dp 但是ce了一发,(abs难道不是cmath里的吗?改成bits/stdc++.h就过了) #include <bits/stdc++.h> using namespace ...

  3. uva12063数位dp

    辣鸡军训毁我青春!!! 因为在军训,导致很长时间都只能看书yy题目,而不能溜到机房鏼题 于是在猫大的帮助下我发现这道习题是数位dp 然后想起之前讲dp的时候一直在补作业所以没怎么写,然后就试了试 果然 ...

  4. HDU2089 不要62[数位DP]

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. 数位DP GYM 100827 E Hill Number

    题目链接 题意:判断小于n的数字中,数位从高到低成上升再下降的趋势的数字的个数 分析:简单的数位DP,保存前一位的数字,注意临界点的处理,都是套路. #include <bits/stdc++. ...

  6. 数位dp总结

    由简单到稍微难点. 从网上搜了10到数位dp的题目,有几道还是很难想到的,前几道基本都是模板题,供入门用. 点开即可看题解. hdu3555 Bomb hdu3652 B-number hdu2089 ...

  7. 数位DP入门

    HDU 2089 不要62 DESC: 问l, r范围内的没有4和相邻62的数有多少个. #include <stdio.h> #include <string.h> #inc ...

  8. 数位DP之奥义

    恩是的没错数位DP的奥义就是一个简练的dfs模板 int dfs(int position, int condition, bool boundary) { ) return (condition ? ...

  9. 浅谈数位DP

    在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...

  10. 数位DP

    题意:(hdu 4734) 我们定义十进制数x的权值为f(x) = a(n)*2^(n-1)+a(n-1)*2(n-2)+...a(2)*2+a(1)*1,a(i)表示十进制数x中第i位的数字. 题目 ...

随机推荐

  1. 第二十三篇 logging模块(******)

    日志非常重要,而且非常常用,可以通过logging模块实现. 热身运动 import logging logging.debug("debug message") logging. ...

  2. 第三篇 Postman之 Tests(后置处理器,断言)

    第二篇里讲了手动设置全局变量及局部变量的方法,但是这有一个缺点,就是每次测试之前,都需要获取相关变量值,手动再填写更新到对应的全局变量或者局部变量里,这对于想进行自动化执行的人或者懒人就不太友好了,本 ...

  3. Mysql性能优化一:SQL语句性能优化

    这里总结了52条对sql的查询优化,下面详细来看看,希望能帮助到你 1, 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2,应尽量避免在 w ...

  4. php解析二维码

    第一种方法: 安装PHP扩展 php-zbarcode之前需要先安装ImageMagick.zbar 第二种方法: 不需要那么麻烦,直接使用PHP的第三方类库 下载地址:https://github. ...

  5. sed-awk命令详解

      第2章 ***********sed***********. 1目  录 2.1 -------sed命令小结及小结图---- 1 2.2 -------第几行---------- 2 2.3 - ...

  6. Drools 7.4.1.Final参考手册(六) 用户手册

    用户手册 基础 无状态的知识Session Drools规则引擎拥有大量的用例和功能,我们要如何开始?你无须担心,这些复杂性是分层的,你可以用简单的用例来逐步入门. 无状态Session,无须使用推理 ...

  7. 阿里云服务器 linux下载 jdk

    直接从本地下载包上传比较慢.直接在服务器上下载安装包: 1.进入orcle官网; 2.选择需要下载的版本,下载需要同意orcle协议, 3.点击下载,获取到下载请求的cookie, 复制所有cooki ...

  8. org.json.Json Object的put和append方法比较

    json.append(key,value) 会把 value 包装成一个数组 JSONObject append = new JSONObject().append("a", & ...

  9. lintcode-62-搜索旋转排序数组

    62-搜索旋转排序数组 假设有一个排序的按未知的旋转轴旋转的数组(比如,0 1 2 4 5 6 7 可能成为4 5 6 7 0 1 2).给定一个目标值进行搜索,如果在数组中找到目标值返回数组中的索引 ...

  10. 修改虚拟机上Linux系统的IP地址

    然后再输入:ifconfig eth0 192.168.11.6 netmask 255.255.255.0   . 这样就可以把网卡eth0的IP地址修改为 192.168.11.6