这道题 将b排序一下 将a(i~n)和b1加起来入堆 每次出一次队(ax+bi) 将(ax+bi+1)入队就好了 能保证答案的正确性 找个自己证明吧

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int M=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int a[M],b[M],n;
struct node{
int a,b,w;
bool operator<(const node&x)const{return w>x.w;}
};
priority_queue<node>q;
int main()
{
n=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=n;i++) b[i]=read();
sort(b+,b++n);
for(int i=;i<=n;i++) q.push((node){a[i],,a[i]+b[]});
for(int i=;i<=n;i++){
node x=q.top(); q.pop();
printf("%d ",x.w);
if(x.b<n) q.push((node){x.a,x.b+,x.a+b[x.b+]});
}
return ;
}

codevs1245最小的N个和 小根堆的更多相关文章

  1. scala写算法-用小根堆解决topK

    topK问题是指从大量数据中获取最大(或最小)的k个数,比如从全校学生中寻找成绩最高的500名学生等等. 本问题可采用小根堆解决.思路是先把源数据中的前k个数放入堆中,然后构建堆,使其保持堆序(可以简 ...

  2. 让priority_queue支持小根堆的几种方法

    点击这里了解什么是priority_queue 前言 priority_queue默认是大根堆,也就是大的元素会放在前面 例如 #include<iostream> #include< ...

  3. CJOJ 2482 【POI2000】促销活动(STL优先队列,大根堆,小根堆)

    CJOJ 2482 [POI2000]促销活动(STL优先队列,大根堆,小根堆) Description 促销活动遵守以下规则: 一个消费者 -- 想参加促销活动的消费者,在账单下记下他自己所付的费用 ...

  4. 优先队列实现 大小根堆 解决top k 问题

      摘于:http://my.oschina.net/leejun2005/blog/135085 目录:[ - ] 1.认识 PriorityQueue 2.应用:求 Top K 大/小 的元素 3 ...

  5. poj2513 Fence Repair(小根堆)

    Description Farmer John wants to repair a small length of the fence around the pasture. He measures ...

  6. 关于dijkstra的小根堆优化

    YY引言 在NOI2018D1T1中出现了一些很震惊的情况,D1T1可以用最短路解决,但是大部分人都在用熟知的SPFA求解最短路.而SPFA的最坏复杂度能够被卡到$O(VE)$.就是边的数量乘以点的数 ...

  7. AcWing:146. 序列(小根堆 + 数学归纳 + 贪心)

    给定m个序列,每个包含n个非负整数. 现在我们可以从每个序列中选择一个数字以形成具有m个整数的序列. 很明显,我们一共可以得到nmnm个这种序列, 然后我们可以计算每个序列中的数字之和,并得到nmnm ...

  8. AcWing:145. 超市(贪心 + 小根堆 or 贪心 + 并查集)

    超市里有N件商品,每个商品都有利润pipi和过期时间didi,每天只能卖一件商品,过期商品(即当天di<=0di<=0)不能再卖. 求合理安排每天卖的商品的情况下,可以得到的最大收益是多少 ...

  9. AcWing:111. 畜栏预定(贪心 + 小根堆)

    有N头牛在畜栏中吃草. 每个畜栏在同一时间段只能提供给一头牛吃草,所以可能会需要多个畜栏. 给定N头牛和每头牛开始吃草的时间A以及结束吃草的时间B,每头牛在[A,B]这一时间段内都会一直吃草. 当两头 ...

随机推荐

  1. 两个完整的jquery slide多方面滑动效果实例

    实例1,需要引用jquery-ui.js <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" &qu ...

  2. jmeter上传视频图片附件

    http上传附件一般用的Content-Type: multipart/form-data;文中是先通过fiddler抓取手机端的请求,然后通过jmeter模拟该请求,如果有接口文档,则可以跳过抓包这 ...

  3. js学习日记-变量的坑

    js变量细节是前端面试经常遇到的问题,可见其重要程度,要想掌握这个知识点,需注意以下几点: 变量提升 所谓变量提升,就是使用了var关键字申明的变量,会提升到所在作用域的顶部.es5的作用域分为全局作 ...

  4. UIButton内部子控件自定义布局-“UIEdgeInsets”

    UIButton UIButton做frame动画时,不响应点击 在一个View内部加入几个按钮,然后改变这个view的frame来做动画,但是按钮不响应点击事件. 问题代码 __block CGRe ...

  5. C# 获取当前日期当年的周数

    这几天跨年,项目上遇到了一个周数计算的问题. 2016年的元旦是周五开始的,之前系统计算的是属于15年的第53个周,但是年份已经到了16年了. 公司要求从1月1号周五开始算作16年的第一个周,今天1月 ...

  6. github简单使用教程(转)

    github是一个基于git的代码托管平台,付费用户可以建私人仓库,我们一般的免费用户只能使用公共仓库,也就是代码要公开.对于一般人来说公共仓库就已经足够了,而且我们也没多少代码来管理,O(∩_∩)O ...

  7. 数据结构与算法之顺序栈C语言实现

    顺序栈是一种特殊的顺序表,主要操作是入栈和出栈.将顺序表加一些特定限制,就成了顺序栈. 注: 1.顺序栈C语言实现: 2.按较简单的方式实现,主要帮助理解,可在此基础上修改,更加完善: 3.提供几个简 ...

  8. [Effective Python] 用Pythonic方式来思考

    Effective Python chap.1 用Pythonic方式来思考 Pythonic: 一门语言的编程习惯是由用户来确立的. 1. 确认自己所使用的Python版本 2. 遵循PEP8风格指 ...

  9. django之上传文件和图片

    文件上传:文件上传功能是网站开发中必定会使用到的技术,在django项目中也是如此,下面会详细讲述django中上传文件的前端和后端的具体处理步骤: 前端HTML代码实现: 1.在前端中,我们需要填入 ...

  10. SPOJ 375 Query on a tree(树链剖分)(QTREE)

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...