hdu-2197 本原串---枚举因子+容斥定理
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=2197
题目大意:
由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串?
答案mod2008.
例如,100100不是本原串,因为他是由两个100组成,而1101是本原串。
解题思路:
设长度为i的串的个数为f(i),显然有f(i) = 2 ^ i
长度为i的本原串为g(i),i的所有因子t长度的本原串均可构成长度为i的非本原串,且不会重复,因为本原串定义就是不会由其他所构成
所以可得:g(i) = f(i) - ∑g(t)(t|i)
可以处理出所有因子,从小到大求出g(i)即可
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pow(ll a, ll b, ll m)
{
ll ans = ;
a %= m;
while(b)
{
if(b & )ans = ans * a % m;
b /= ;
a *= a;
a %= m;
}
return ans;
}
ll a[], b[];
int main()
{
ll n, k, m = ;
while(cin >> n && n)
{
int tot = ;
for(int i = ; i * i <= n; i++)
{
if(n % i == )
{
a[tot++] = i;
if(i * i != n)a[tot++] = n / i;
}
}
sort(a, a + tot);
for(int i = ; i < tot; i++)b[i] = pow(, a[i], m);
for(int i = ; i < tot; i++)
{
for(int j = i + ; j < tot; j++)
{
if(a[j] % a[i] == )b[j] -= b[i], b[j] %= m;
//此处相减可能为负值,这是因为全部模上2008的结果,所以需要每次计算后模上2008,保证绝对值在2008以内
}
}
cout<<(b[tot-] + m) % m<<endl;//之前已经保证绝对值在m之内,加上m一定是正数再取模
}
return ;
}
hdu-2197 本原串---枚举因子+容斥定理的更多相关文章
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 数学--数论--HDU 2197 本原串 (推规律)
由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串? 答案mod2008. 例如,100100不是本原串,因为他是由两个 ...
- hdu 2197 本原串
http://acm.hdu.edu.cn/showproblem.php?pid=2197 长度为n的01串有2的n次方个,再减去不符合要求的.不符合要求的字符串就是长度为n的约数的字符串. 递归处 ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1796How many integers can you find(简单容斥定理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 4135 Co-prime 欧拉+容斥定理
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 题解报告:hdu 4135 Co-prime(容斥定理入门)
Problem Description Given a number N, you are asked to count the number of integers between A and B ...
- HDU - 4135 Co-prime 容斥定理
题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...
- HDU 1695 GCD(容斥定理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
随机推荐
- archlinux安装交叉编译工具链
1. 在/usr/local下新建文件夹:arm [guo@archlinux local]$sudo mkdir arm 2. 将交叉编译工具拷贝到arm文件夹中 [guo@archlinux ...
- JavaScript 浮点数及运算精度调整总结
JavaScript 浮点数及运算精度调整总结 JavaScript 只有一种数字类型 Number,而且在Javascript中所有的数字都是以IEEE-754标准格式表示的.浮点数的精度问题不是J ...
- TOJ 3744 Transportation Costs
描述 Minya Konka decided to go to Fuzhou to participate in the ACM regional contest at their own expen ...
- TreeMap和TreeSet简单应用
建一个实体类并实现Comparable接口重写compareTo方法 public class pojo implements Comparable<pojo> { private int ...
- 移动端H5页面注意事项
1. 单个页面内容不能过多 设计常用尺寸:7501334 / 6401134,包含了手机顶部信号栏的高度. 移动端H5活动页面常常需要能够分享到各种社交App中,常用的有微信.QQ等. 使用移动设备查 ...
- ASP.NET MVC 生命周期
本文的目的旨在详细描述ASP.NET MVC请求从开始到结束的每一个过程.我希望能理解在浏览器输入URL并敲击回车来请求一个ASP.NET MVC网站的页面之后发生的任何事情. 为什么需要关心这些?有 ...
- sql 全局查询
select * from sysobjects o ,syscomments c where o.id=c.id and text like '%ST_Status%'
- 使用waitfor 语句
aitfor语句用于延迟后面语句的执行,可以指定延迟时间长度是具体的时间.参考下面的语句: waitfor delay ’00:01:15’ print N’到时间了’ --也可以不加N 字符串 ...
- DevExpress 14.2 批量汉化
1.下载DevExpress_.NET_Localization_Resources_14.2汉化包 2.解压后将zh-CN或zh-CHS复制到安装目录如D:\Program Files (x86)\ ...
- java中如何遍历实体类的属性和数据类型以及属性值
package com.walkerjava.test; import java.lang.reflect.Field; import java.lang.reflect.InvocationTa ...