题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=2197

题目大意:

由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串?
答案mod2008.
例如,100100不是本原串,因为他是由两个100组成,而1101是本原串。

解题思路:

设长度为i的串的个数为f(i),显然有f(i) = 2 ^ i

长度为i的本原串为g(i),i的所有因子t长度的本原串均可构成长度为i的非本原串,且不会重复,因为本原串定义就是不会由其他所构成

所以可得:g(i) = f(i) - ∑g(t)(t|i)

可以处理出所有因子,从小到大求出g(i)即可

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pow(ll a, ll b, ll m)
{
ll ans = ;
a %= m;
while(b)
{
if(b & )ans = ans * a % m;
b /= ;
a *= a;
a %= m;
}
return ans;
}
ll a[], b[];
int main()
{
ll n, k, m = ;
while(cin >> n && n)
{
int tot = ;
for(int i = ; i * i <= n; i++)
{
if(n % i == )
{
a[tot++] = i;
if(i * i != n)a[tot++] = n / i;
}
}
sort(a, a + tot);
for(int i = ; i < tot; i++)b[i] = pow(, a[i], m);
for(int i = ; i < tot; i++)
{
for(int j = i + ; j < tot; j++)
{
if(a[j] % a[i] == )b[j] -= b[i], b[j] %= m;
//此处相减可能为负值,这是因为全部模上2008的结果,所以需要每次计算后模上2008,保证绝对值在2008以内
}
}
cout<<(b[tot-] + m) % m<<endl;//之前已经保证绝对值在m之内,加上m一定是正数再取模
}
return ;
}

hdu-2197 本原串---枚举因子+容斥定理的更多相关文章

  1. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. 数学--数论--HDU 2197 本原串 (推规律)

    由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串? 答案mod2008. 例如,100100不是本原串,因为他是由两个 ...

  3. hdu 2197 本原串

    http://acm.hdu.edu.cn/showproblem.php?pid=2197 长度为n的01串有2的n次方个,再减去不符合要求的.不符合要求的字符串就是长度为n的约数的字符串. 递归处 ...

  4. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  5. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  6. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. 题解报告:hdu 4135 Co-prime(容斥定理入门)

    Problem Description Given a number N, you are asked to count the number of integers between A and B ...

  8. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  9. HDU 1695 GCD(容斥定理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

随机推荐

  1. archlinux安装交叉编译工具链

    1. 在/usr/local下新建文件夹:arm  [guo@archlinux local]$sudo mkdir arm 2. 将交叉编译工具拷贝到arm文件夹中  [guo@archlinux ...

  2. JavaScript 浮点数及运算精度调整总结

    JavaScript 浮点数及运算精度调整总结 JavaScript 只有一种数字类型 Number,而且在Javascript中所有的数字都是以IEEE-754标准格式表示的.浮点数的精度问题不是J ...

  3. TOJ 3744 Transportation Costs

    描述 Minya Konka decided to go to Fuzhou to participate in the ACM regional contest at their own expen ...

  4. TreeMap和TreeSet简单应用

    建一个实体类并实现Comparable接口重写compareTo方法 public class pojo implements Comparable<pojo> { private int ...

  5. 移动端H5页面注意事项

    1. 单个页面内容不能过多 设计常用尺寸:7501334 / 6401134,包含了手机顶部信号栏的高度. 移动端H5活动页面常常需要能够分享到各种社交App中,常用的有微信.QQ等. 使用移动设备查 ...

  6. ASP.NET MVC 生命周期

    本文的目的旨在详细描述ASP.NET MVC请求从开始到结束的每一个过程.我希望能理解在浏览器输入URL并敲击回车来请求一个ASP.NET MVC网站的页面之后发生的任何事情. 为什么需要关心这些?有 ...

  7. sql 全局查询

    select * from sysobjects o ,syscomments c where o.id=c.id and text like '%ST_Status%'

  8. 使用waitfor 语句

    aitfor语句用于延迟后面语句的执行,可以指定延迟时间长度是具体的时间.参考下面的语句: waitfor delay ’00:01:15’ print N’到时间了’    --也可以不加N 字符串 ...

  9. DevExpress 14.2 批量汉化

    1.下载DevExpress_.NET_Localization_Resources_14.2汉化包 2.解压后将zh-CN或zh-CHS复制到安装目录如D:\Program Files (x86)\ ...

  10. java中如何遍历实体类的属性和数据类型以及属性值

      package com.walkerjava.test; import java.lang.reflect.Field; import java.lang.reflect.InvocationTa ...