Java总结篇:Java多线程

多线程作为Java中很重要的一个知识点,在此还是有必要总结一下的。

一.线程的生命周期及五种基本状态

关于Java中线程的生命周期,首先看一下下面这张较为经典的图:

上图中基本上囊括了Java中多线程各重要知识点。掌握了上图中的各知识点,Java中的多线程也就基本上掌握了。主要包括:

Java线程具有五中基本状态

新建状态(New):当线程对象对创建后,即进入了新建状态,如:Thread t = new MyThread();

就绪状态(Runnable):当调用线程对象的start()方法(t.start();),线程即进入就绪状态。处于就绪状态的线程,只是说明此线程已经做好了准备,随时等待CPU调度执行,并不是说执行了t.start()此线程立即就会执行;

运行状态(Running):当CPU开始调度处于就绪状态的线程时,此时线程才得以真正执行,即进入到运行状态。注:就 绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;

阻塞状态(Blocked):处于运行状态中的线程由于某种原因,暂时放弃对CPU的使用权,停止执行,此时进入阻塞状态,直到其进入到就绪状态,才 有机会再次被CPU调用以进入到运行状态。根据阻塞产生的原因不同,阻塞状态又可以分为三种:

1.等待阻塞:运行状态中的线程执行wait()方法,使本线程进入到等待阻塞状态;

2.同步阻塞 -- 线程在获取synchronized同步锁失败(因为锁被其它线程所占用),它会进入同步阻塞状态;

3.其他阻塞 -- 通过调用线程的sleep()或join()或发出了I/O请求时,线程会进入到阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。

死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。

二. Java多线程的创建及启动

Java中线程的创建常见有如三种基本形式

1.继承Thread类,重写该类的run()方法。
class MyThread extends Thread {

    private int i = 0;

    @Override
public void run() {
for (i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
}
}
}
public class ThreadTest {

    public static void main(String[] args) {
for (int i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
if (i == 30) {
Thread myThread1 = new MyThread(); // 创建一个新的线程 myThread1 此线程进入新建状态
Thread myThread2 = new MyThread(); // 创建一个新的线程 myThread2 此线程进入新建状态
myThread1.start(); // 调用start()方法使得线程进入就绪状态
myThread2.start(); // 调用start()方法使得线程进入就绪状态
}
}
}
}

如上所示,继承Thread类,通过重写run()方法定义了一个新的线程类MyThread,其中run()方法的方法体代表了线程需要完成的任务,称之为线程执行体。当创建此线程类对象时一个新的线程得以创建,并进入到线程新建状态。通过调用线程对象引用的start()方法,使得该线程进入到就绪状态,此时此线程并不一定会马上得以执行,这取决于CPU调度时机。

2.实现Runnable接口,并重写该接口的run()方法,该run()方法同样是线程执行体,创建Runnable实现类的实例,并以此实例作为Thread类的target来创建Thread对象,该Thread对象才是真正的线程对象。

class MyRunnable implements Runnable {
private int i = 0; @Override
public void run() {
for (i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
}
}
}
public class ThreadTest {

    public static void main(String[] args) {
for (int i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
if (i == 30) {
Runnable myRunnable = new MyRunnable(); // 创建一个Runnable实现类的对象
Thread thread1 = new Thread(myRunnable); // 将myRunnable作为Thread target创建新的线程
Thread thread2 = new Thread(myRunnable);
thread1.start(); // 调用start()方法使得线程进入就绪状态
thread2.start();
}
}
}
}

相信以上两种创建新线程的方式大家都很熟悉了,那么Thread和Runnable之间到底是什么关系呢?我们首先来看一下下面这个例子。

public class ThreadTest {

    public static void main(String[] args) {
for (int i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
if (i == 30) {
Runnable myRunnable = new MyRunnable();
Thread thread = new MyThread(myRunnable);
thread.start();
}
}
}
} class MyRunnable implements Runnable {
private int i = 0; @Override
public void run() {
System.out.println("in MyRunnable run");
for (i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
}
}
} class MyThread extends Thread { private int i = 0; public MyThread(Runnable runnable){
super(runnable);
} @Override
public void run() {
System.out.println("in MyThread run");
for (i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
}
}
}

同样的,与实现Runnable接口创建线程方式相似,不同的地方在于

1 Thread thread = new MyThread(myRunnable);

那么这种方式可以顺利创建出一个新的线程么?答案是肯定的。至于此时的线程执行体到底是MyRunnable接口中的run()方法还是MyThread类中的run()方法呢?通过输出我们知道线程执行体是MyThread类中的run()方法。其实原因很简单,因为Thread类本身也是实现了Runnable接口,而run()方法最先是在Runnable接口中定义的方法。

public interface Runnable {

	public abstract void run();

}

我们看一下Thread类中对Runnable接口中run()方法的实现:

@Override
public void run() {
if (target != null) {
target.run();
}
}

3.使用Callable和Future接口创建线程。具体是创建Callable接口的实现类,并实现clall()方法。并使用FutureTask类来包装Callable实现类的对象,且以此FutureTask对象作为Thread对象的target来创建线程。

看着好像有点复杂,直接来看一个例子就清晰了。

 public class ThreadTest {

    public static void main(String[] args) {

        Callable<Integer> myCallable = new MyCallable();    // 创建MyCallable对象
FutureTask<Integer> ft = new FutureTask<Integer>(myCallable); //使用FutureTask来包装MyCallable对象 for (int i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
if (i == 30) {
Thread thread = new Thread(ft); //FutureTask对象作为Thread对象的target创建新的线程
thread.start(); //线程进入到就绪状态
}
} System.out.println("主线程for循环执行完毕.."); try {
int sum = ft.get(); //取得新创建的新线程中的call()方法返回的结果
System.out.println("sum = " + sum);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
} }
} class MyCallable implements Callable<Integer> {
private int i = 0; // 与run()方法不同的是,call()方法具有返回值
@Override
public Integer call() {
int sum = 0;
for (; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
sum += i;
}
return sum;
} }

首先,我们发现,在实现Callable接口中,此时不再是run()方法了,而是call()方法,此call()方法作为线程执行体,同时还具有返回值!在创建新的线程时,是通过FutureTask来包装MyCallable对象,同时作为了Thread对象的target。那么看下FutureTask类的定义:

public class FutureTask<V> implements RunnableFuture<V> {
// ...
}
public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}

于是,我们发现FutureTask类实际上是同时实现了Runnable和Future接口,由此才使得其具有Future和Runnable双重特性。通过Runnable特性,可以作为Thread对象的target,而Future特性,使得其可以取得新创建线程中的call()方法的返回值。

执行下此程序,我们发现sum = 4950永远都是最后输出的。而“主线程for循环执行完毕..”则很可能是在子线程循环中间输出。由CPU的线程调度机制,我们知道,“主线程for循环执行完毕..”的输出时机是没有任何问题的,那么为什么sum =4950会永远最后输出呢?

原因在于通过ft.get()方法获取子线程call()方法的返回值时,当子线程此方法还未执行完毕,ft.get()方法会一直阻塞,直到call()方法执行完毕才能取到返回值。

上述主要讲解了三种常见的线程创建方式,对于线程的启动而言,都是调用线程对象的start()方法,需要特别注意的是:不能对同一线程对象两次调用start()方法。

三. Java多线程的就绪、运行和死亡状态

就绪状态转换为运行状态:当此线程得到处理器资源;

运行状态转换为就绪状态:当此线程主动调用yield()方法或在运行过程中失去处理器资源。

运行状态转换为死亡状态:当此线程线程执行体执行完毕或发生了异常。

此处需要特别注意的是:当调用线程的yield()方法时,线程从运行状态转换为就绪状态,但接下来CPU调度就绪状态中的哪个线程具有一定的随机性,因此,可能会出现A线程调用了yield()方法后,接下来CPU仍然调度了A线程的情况。

由于实际的业务需要,常常会遇到需要在特定时机终止某一线程的运行,使其进入到死亡状态。目前最通用的做法是设置一boolean型的变量,当条件满足时,使线程执行体快速执行完毕。如:

public class ThreadTest {

    public static void main(String[] args) {

        MyRunnable myRunnable = new MyRunnable();
Thread thread = new Thread(myRunnable); for (int i = 0; i < 100; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
if (i == 30) {
thread.start();
}
if(i == 40){
myRunnable.stopThread();
}
}
}
} class MyRunnable implements Runnable { private boolean stop; @Override
public void run() {
for (int i = 0; i < 100 && !stop; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
}
} public void stopThread() {
this.stop = true;
} }

更多参考:http://www.cnblogs.com/GarfieldEr007/p/5746362.html

Java多线程(Java总结篇)的更多相关文章

  1. Java多线程系列--“基础篇”11之 生产消费者问题

    概要 本章,会对“生产/消费者问题”进行讨论.涉及到的内容包括:1. 生产/消费者模型2. 生产/消费者实现 转载请注明出处:http://www.cnblogs.com/skywang12345/p ...

  2. Java多线程系列--“基础篇”04之 synchronized关键字

    概要 本章,会对synchronized关键字进行介绍.涉及到的内容包括:1. synchronized原理2. synchronized基本规则3. synchronized方法 和 synchro ...

  3. Java多线程系列--“基础篇”02之 常用的实现多线程的两种方式

    概要 本章,我们学习“常用的实现多线程的2种方式”:Thread 和 Runnable.之所以说是常用的,是因为通过还可以通过java.util.concurrent包中的线程池来实现多线程.关于线程 ...

  4. Java多线程系列--“基础篇”03之 Thread中start()和run()的区别

    概要 Thread类包含start()和run()方法,它们的区别是什么?本章将对此作出解答.本章内容包括:start() 和 run()的区别说明start() 和 run()的区别示例start( ...

  5. Java多线程系列--“基础篇”05之 线程等待与唤醒

    概要 本章,会对线程等待/唤醒方法进行介绍.涉及到的内容包括:1. wait(), notify(), notifyAll()等方法介绍2. wait()和notify()3. wait(long t ...

  6. Java多线程系列--“基础篇”06之 线程让步

    概要 本章,会对Thread中的线程让步方法yield()进行介绍.涉及到的内容包括:1. yield()介绍2. yield()示例3. yield() 与 wait()的比较 转载请注明出处:ht ...

  7. Java多线程系列--“基础篇”07之 线程休眠

    概要 本章,会对Thread中sleep()方法进行介绍.涉及到的内容包括:1. sleep()介绍2. sleep()示例3. sleep() 与 wait()的比较 转载请注明出处:http:// ...

  8. Java多线程系列--“基础篇”08之 join()

    概要 本章,会对Thread中join()方法进行介绍.涉及到的内容包括:1. join()介绍2. join()源码分析(基于JDK1.7.0_40)3. join()示例 转载请注明出处:http ...

  9. Java多线程系列--“基础篇”09之 interrupt()和线程终止方式

    概要 本章,会对线程的interrupt()中断和终止方式进行介绍.涉及到的内容包括:1. interrupt()说明2. 终止线程的方式2.1 终止处于“阻塞状态”的线程2.2 终止处于“运行状态” ...

  10. Java多线程系列--“基础篇”10之 线程优先级和守护线程

    概要 本章,会对守护线程和线程优先级进行介绍.涉及到的内容包括:1. 线程优先级的介绍2. 线程优先级的示例3. 守护线程的示例 转载请注明出处:http://www.cnblogs.com/skyw ...

随机推荐

  1. script

    实例 链接一个外部脚本文件: <script type="text/javascript" src="myscripts.js"></scri ...

  2. STL 源代码剖析 算法 stl_algo.h -- rotate

    本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie rotate --------------------------------------- ...

  3. openWRT自学---对官方的开发指导文档的解读和理解 记录3:一些常用方法

    1.约定 configuration files follow the convention:  <name>.conf init files follow the convention: ...

  4. 搭建RocketMQ踩的坑-内存不足

    环境是vmvare+ubuntu 1.http://rocketmq.apache.org/docs/quick-start/ 按照官网来启动mqnamesrv和mqbroker报错 错误如下 The ...

  5. JNDI架构提供了一组标准的独立于命名系统的API

    JNDI架构提供了一组标准的独立于命名系统的API,这些API构建在与命名系统有关的驱动之上.这一层有助于将应用与实际数据源分离,因此不管应用访问的是LDAP.RMI.DNS.还是其他的目录服务.换句 ...

  6. Unity3d Resources TextAsset 文本

    一些小型数据,可以用txt文本作为媒介,进行获取.传输.修改.存储: 比如:User1.2.3.txt,放入 Resources/Data 文件下: 一,Unity3d Resources.Load ...

  7. ie10 css hack 条件注释等兼容方式整理

    点评:ie10已经上线一段时间了,相信已经有一部分前端潮人体验过了,截至到现在,在ie6到ie9的浏览器各种各样的古怪行为,开发人员不得不使用条件注释,有条件的类,和其他特定于IE的css hack来 ...

  8. bloom filter + murmurhash

    是一种hash方法,其实核心思想就是,将一个字符串通过多个普通hash函数映射到hash表上,然后再进行检索的时候同样计算hash函数,如果全都都hash表上出现过,那么说明有极大的可能出现过,如果没 ...

  9. Cocos2d-x Lua中使用标签

    游戏场景中的文字包括了静态文字和动态文字.静态文字如下图所示游戏场景中①号文字“COCOS2DX”,动态文字如图4-1所示游戏场景中的②号文字“Hello World”.静态文字一般是由美工使用Pho ...

  10. CentOS7上elasticsearch5.0启动失败

    CentOS7上elasticsearch5.0启动失败 刚一启动完直接就退出了 $ ./elasticsearch ... ERROR: bootstrap checks failed max fi ...