线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治。他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还有一种做法就是对于作用域一整个区间的标记,就将其放置在此区间节点,查询时再结算其贡献,但无论怎样我们都要保证我们查询到的区间信息的真实性完整性,这就意味着我们接触一个区间若要了解到他的全部有用信息,并不用进入其下层区间(以上两种标记方式往往再结合出现时有巧妙的用处)。于是我们必须高效地合并子区间的信息以维护此区间的信息,对于多数信息我们可以在O(1)时间内高效完成,但是有一些时候我们的合并并不顺利,并不能直接结算,这个时候我们会多记录一些附加信息来便于合并,但是如果这样行不通我们还有另外一种高效的方式,就是在合并的时候我们再对子区间进行分治(往往利用线段树静态分治的天然优势),如果能得到O(log)的复杂度(或者其他可以接受的复杂度),那么就是可行的,这种方法在题目中的三道题中均有应用。

关于【BZOJ 2957】楼房重建,比较裸,直接讲解下两道。懒的说了

Codechef COT5 Count on a Treap

关于这道题你一看题干就不能去打Treap。我们想一想笛卡尔树,那么我们就把这些点用key值(二叉树)排序,然后发现得到的区间里,如果用val值(堆)从大到小切割区间,就得到了我们想要的Treap。两个数之间的最大值(val)就他们的lca,那么我们又发现,每个点向两边的上升序列长度和就是他的深度,这样我们就得到了一种可行方案,现在我们就是要找上升序列列长度,方法同上题。

#pragma GCC optimize("O3")
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define mid ((l+r)>>1)
typedef long long LL;
const LL N=;
typedef std::pair<LL,LL> pii;
struct Segment_Tree{
Segment_Tree *ch[];
int zlen,ylen,pos;LL max;
inline void pushup(){
if(ch[]->max>ch[]->max) max=ch[]->max,pos=ch[]->pos;
else max=ch[]->max,pos=ch[]->pos;
}
}*root,node[N<<];
int n,sz,T;LL q[N][];
pii poi[N];
inline void build(Segment_Tree *&p,int l,int r){
p=node+(sz++),p->zlen=p->ylen=;
if(l==r){p->max=,p->pos=l;return;}
build(p->ch[],l,mid),build(p->ch[],mid+,r);
p->pushup();
}
inline int zcalc(Segment_Tree *p,int l,int r,LL max){
if(p==NULL||p->max<=max)return ;
if(l==r)return p->max>max;
if(p->ch[]->max<=max)return zcalc(p->ch[],mid+,r,max);
else return zcalc(p->ch[],l,mid,max)+p->zlen-p->ch[]->zlen;
}
inline int ycalc(Segment_Tree *p,int l,int r,LL max){
if(p==NULL||p->max<=max)return ;
if(l==r)return p->max>max;
if(p->ch[]->max<=max)return ycalc(p->ch[],l,mid,max);
else return ycalc(p->ch[],mid+,r,max)+p->ylen-p->ch[]->ylen;
}
inline void U(Segment_Tree *p,int l,int r,int pos,LL val){
if(l==r){p->max=val;return;}
if(pos<=mid)U(p->ch[],l,mid,pos,val);
else U(p->ch[],mid+,r,pos,val);
p->pushup();
p->zlen=p->ch[]->zlen+zcalc(p->ch[],mid+,r,p->ch[]->max);
p->ylen=p->ch[]->ylen+ycalc(p->ch[],l,mid,p->ch[]->max);
}
inline pii Q(Segment_Tree *p,int l,int r,int z,int y){
if(z<=l&&r<=y)return std::make_pair(p->max,p->pos);
pii ret=std::make_pair(-,-),temp;
if(z<=mid)temp=Q(p->ch[],l,mid,z,y);
if(temp.first>ret.first)ret=temp;
if(mid<y)temp=Q(p->ch[],mid+,r,z,y);
if(temp.first>ret.first)ret=temp;
return ret;
}
inline void Qz(Segment_Tree *p,int l,int r,int z,int y,int &ans,LL &max){
if(z<=l&&r<=y){ans+=zcalc(p,l,r,max),max=std::max(max,p->max);return;}
if(z<=mid)Qz(p->ch[],l,mid,z,y,ans,max);
if(mid<y)Qz(p->ch[],mid+,r,z,y,ans,max);
}
inline void Qy(Segment_Tree *p,int l,int r,int z,int y,int &ans,LL &max){
if(z<=l&&r<=y){ans+=ycalc(p,l,r,max),max=std::max(max,p->max);return;}
if(mid<y)Qy(p->ch[],mid+,r,z,y,ans,max);
if(z<=mid)Qy(p->ch[],l,mid,z,y,ans,max);
}
inline int Q(int pos){
int ret=,ans=;LL max=poi[pos].second;
if(pos!=)Qy(root,,n,,pos-,ans,max);
ret+=ans,ans=,max=poi[pos].second;
if(pos!=n)Qz(root,,n,pos+,n,ans,max);
ret+=ans;return ret;
}
int main(){
scanf("%d",&T);for(int i=;i<=T;++i){
scanf("%lld",&q[i][]);
if(q[i][]&)scanf("%lld",&q[i][]);
else scanf("%lld%lld",&q[i][],&q[i][]);
if(q[i][]==)poi[++n]=std::make_pair(q[i][],q[i][]);
}
std::sort(poi+,poi+(n+)),build(root,,n);
for(int i=,pos,l,r,mi;i<=T;++i)
switch(q[i][]){
case :
pos=std::lower_bound(poi+,poi+(n+),std::make_pair(q[i][],0LL))-poi;
U(root,,n,pos,q[i][]);break;
case :
pos=std::lower_bound(poi+,poi+(n+),std::make_pair(q[i][],0LL))-poi;
U(root,,n,pos,);break;
case :
l=std::lower_bound(poi+,poi+(n+),std::make_pair(q[i][],0LL))-poi;
r=std::lower_bound(poi+,poi+(n+),std::make_pair(q[i][],0LL))-poi;
if(l>r)l^=r^=l^=r;mi=Q(root,,n,l,r).second;
printf("%d\n",Q(l)+Q(r)-Q(mi)*);break;
}
}

Codechef COT5 Count on a Treap

【NOIP模拟赛】Weed

这道题十分巧妙,我们在线段树上记录三个值,要删之前的多少点,剩下多少点,剩下多少东西,然后单点修改,查询root,维护同理。

#pragma GCC optimize("O3")
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define mid ((l+r)>>1)
const int N=;
inline void read(int &sum){
register char ch=getchar();
for(sum=;ch<''||ch>'';ch=getchar());
for(;ch>=''&&ch<='';sum=(sum<<)+(sum<<)+ch-'',ch=getchar());
}
struct Segment_Tree{
Segment_Tree *ch[];
int del,sum,num;
}*root,node[N<<];
int sz,n,m;
inline void build(Segment_Tree *&p,int l,int r){
p=node+(sz++);if(l==r)return;
build(p->ch[],l,mid),build(p->ch[],mid+,r);
}
inline int Q(Segment_Tree *p,int l,int r,int del){
if(p->num<=del)return ;
if(l==r)return p->sum;
if(p->ch[]->num>=del)return p->sum-p->ch[]->sum+Q(p->ch[],mid+,r,del);
else return Q(p->ch[],l,mid,del-p->ch[]->num+p->ch[]->del);
}
inline void U(Segment_Tree *p,int l,int r,int pos,int key,int opt){
if(l==r){
if(opt)p->sum=,p->num=,p->del=key;
else p->del=,p->num=,p->sum=key;
return;
}
if(pos<=mid)U(p->ch[],l,mid,pos,key,opt);
else U(p->ch[],mid+,r,pos,key,opt);
if(p->ch[]->num<=p->ch[]->del)
p->del=p->ch[]->del+p->ch[]->del-p->ch[]->num,p->sum=p->ch[]->sum,p->num=p->ch[]->num;
else
p->del=p->ch[]->del,p->num=p->ch[]->num+p->ch[]->num-p->ch[]->del,
p->sum=p->ch[]->sum+Q(p->ch[],l,mid,p->ch[]->del);
}
int main(){
read(n),read(m),build(root,,n);
for(int i=,x,y;i<=n;++i)
read(x),read(y),U(root,,n,i,y,x);
int pos,opt,key;
while(m--){
read(pos),read(opt),read(key);
U(root,,n,pos,key,opt);
printf("%d\n",root->sum);
}
}

【NOIP模拟赛】Weed

【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护的更多相关文章

  1. BZOJ 2957楼房重建

    传送门 线段树 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include< ...

  2. bzoj 2957: 楼房重建 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施 ...

  3. bzoj 2957 楼房重建 分块

    楼房重建 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=29 ...

  4. [BZOJ 2957]楼房重建(THU2013集训)(线段树维护单调栈)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2957 分析: 根据题意,就是比较斜率大小 只看一段区间的话,那么这段区间能看见的楼房数量就是这 ...

  5. BZOJ 2957 楼房重建 (线段树)

    题目链接  楼房重建 解题思路:我们可以把楼房的最高点的斜率计算出来.那么问题就转化成了实时查询x的个数,满足数列x的左边没有大于等于x的数. 我们可以用线段树维护 设t[i]为如果只看这个区间,可以 ...

  6. 洛谷 P4198 BZOJ 2957 楼房重建

    题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个 ...

  7. BZOJ 2957 楼房重建

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  8. bzoj 2957 楼房重建 (线段树+思路)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对 ...

  9. bzoj 2957: 楼房重建 ——线段树

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

随机推荐

  1. Python爬虫爬取百度翻译之数据提取方法json

    工具:Python 3.6.5.PyCharm开发工具.Windows 10 操作系统 说明:本例为实现输入中文翻译为英文的小程序,适合Python爬虫的初学者一起学习,感兴趣的可以做英文翻译为中文的 ...

  2. BAT批处理

    常用命令 查看目录内容命令dir 指定可执行文件搜索目录path 创建目录命令md 打开指定目录命令cd 删除当前指定的子目录命令rd 改变当前盘符命令d: 文件复制命令copy 显示文本文件内容命令 ...

  3. CSS3新特性回顾

    CSS3 介绍 开始实例 新特征简介 强大的CSS选择器 抛弃图片的视觉效果 盒模型变化(多列布局和弹性盒模型) 阴影效果 Web字体和web Font 图标 CSS33过渡与动画交互效果 媒体查询 ...

  4. Android开发——View动画、帧动画和属性动画详解

    0. 前言   Android动画是面试的时候经常被问到的话题.我们都知道Android动画分为三类:View动画.帧动画和属性动画. 先对这三种动画做一个概述: View动画是一种渐进式动画,通过图 ...

  5. 5-sql语句

    1 [oracle@ocp ~]$ . oraenv # ORACLE_SID = [oracle] ? orcl The Oracle base has been set to /u01/app/o ...

  6. P1196 银河英雄传说(加权并查集)

    P1196 银河英雄传说 题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在 ...

  7. Java:Random函数及其种子的作用

    伪随机(preundorandom):通过算法产生的随机数都是伪随机!! 只有通过真实的随机事件产生的随机数才是真随机!!比如,通过机器的硬件噪声产生随机数.通过大气噪声产生随机数 Random生成的 ...

  8. Hibernate-ORM:16.Hibernate中的二级缓存Ehcache的配置

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客讲述Hibernate中的二级缓存的配置,作者将使用的是ehcache缓存 一,目录 1.二级缓存的具 ...

  9. 实用脚本 4 -- Makefile(不同文件下的多个可执行文件or静态库编译到同一目录下)

    不同文件下的多个可执行文件编译到同一目录下,这样方便观察编译结果,从而方便进程操作.使用时根据自己的需要在进行局部修改(如 链接库.目标文件等等). 1..bashrc 中设置编译主目录(例如) ex ...

  10. 【C#】 引用类型

    [C#] 引用类型 附图和代码为了便于理解引用类型 public static void RefDemo() { RefClass r1 = new RefClass { Name = "r ...