题目链接

 /*
Name:nyoj-253-LK的旅行
Copyright:
Author:
Date: 2018/4/27 15:01:36
Description:
zyj的模板
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = ;
struct Point
{
int x, y;
Point(int _x = , int _y = )
{
x = _x;
y = _y;
}
Point operator - (const Point &b)const
{
return Point(x - b.x, y - b.y);
}
int operator ^(const Point &b)const
{
return x * b.y - y * b.x;
}
int operator *(const Point &b)const
{
return x * b.x + y * b.y;
}
void input()
{
scanf("%d%d", &x, &y);
return ;
}
};
// 距离的平方
int dist2(Point a, Point b)
{
return (a - b) * (a - b);
} // 二维凸包
Point list[MAXN];
int Stack[MAXN], top;
bool _cmp(Point p1, Point p2)
{
int tmp = (p1 - list[]) ^ (p2 - list[]);
if (tmp > )
{
return true;
}
else if (tmp == && dist2(p1, list[]) <= dist2(p2, list[]))
{
return true;
}
else
{
return false;
}
}
void Graham(int n)
{
Point p0;
int k = ;
p0 = list[];
for (int i = ; i < n; i++)
{
if (p0.y > list[i].y || (p0.y == list[i].y && p0.x > list[i].x))
{
p0 = list[i];
k = i;
}
}
swap(list[k], list[]);
sort(list + , list + n, _cmp);
if (n == )
{
top = ;
Stack[] = ;
return ;
}
if (n == )
{
top = ;
Stack[] = ;
Stack[] = ;
return ;
}
Stack[] = ;
Stack[] = ;
top = ;
for (int i = ; i < n; i++)
{
while (top > && ((list[Stack[top - ]] - list[Stack[top - ]]) ^ (list[i] - list[Stack[top - ]])) <= )
{
top--;
}
Stack[top++] = i;
}
return ;
}
// 旋转卡壳,求两点间距离平方的最大值
int rotating_calipers(Point p[],int n)
{
int ans = ;
Point v;
int cur = ;
for (int i = ; i < n; i++)
{
v = p[i] - p[(i + ) % n];
while ((v ^ (p[(cur + ) % n] - p[cur])) < )
{
cur = (cur + ) % n;
}
ans = max(ans, max(dist2(p[i], p[cur]), dist2(p[(i + ) % n], p[(cur + ) % n])));
}
return ans;
}
Point p[MAXN];
int main()
{
int n;
cin>>n;
while (n--)
{
int m;
cin>>m;
for (int i = ; i < m; i++)
{
list[i].input();
}
Graham(m);
for (int i = ; i < top; i++)
{
p[i] = list[Stack[i]];
}
printf("%d\n", rotating_calipers(p, top));
}
return ;
}

nyoj-253-LK的旅行(Graham算法和旋转卡壳)的更多相关文章

  1. nyoj 253:LK的旅行 【旋转卡壳入门】

    题目链接 求平面最大点对. 找凸包 -> 根据凸包运用旋转卡壳算法求最大点对(套用kuang巨模板) 关于旋转卡壳算法 #include<bits/stdc++.h> using n ...

  2. Graham算法—二维点集VC++实现

    一.凸包定义 通俗的说就是:一组平面上的点,求一个包含所有点的最小凸多边形,这个最小凸多边形就是凸包. 二.Graham算法思想 概要:Graham算法的主要思想就是,最终形成的凸包,即包围所有点的凸 ...

  3. 平面凸包Graham算法

    板题hdu1348Wall 平面凸包问题是计算几何中的一个经典问题 具体就是给出平面上的多个点,求一个最小的凸多边形,使得其包含所有的点 具体形象就类似平面上有若干柱子,一个人用绳子从外围将其紧紧缠绕 ...

  4. nyoj_253:LK的旅行(旋转卡壳入门)

    题目链接 求平面最大点对. 找凸包 -> 根据凸包运用旋转卡壳算法求最大点对(套用kuang巨模板) 关于旋转卡壳算法 #include<bits/stdc++.h> using n ...

  5. poj 2187 凸包加旋转卡壳算法

    题目链接:http://poj.org/problem?id=2187 旋转卡壳算法:http://www.cppblog.com/staryjy/archive/2009/11/19/101412. ...

  6. LA 4728 旋转卡壳算法求凸包的最大直径

    #include<iostream> #include<cstdio> #include<cmath> #include<vector> #includ ...

  7. POJ2187 Beauty Contest (旋转卡壳算法 求直径)

    POJ2187 旋转卡壳算法如图 证明:对于直径AB 必然有某一时刻 A和B同时被卡住 所以旋转卡壳卡住的点集中必然存在直径 而卡壳过程显然是O(n)的 故可在O(n)时间内求出直径 凸包具有良好的性 ...

  8. POJ 2187 旋转卡壳 + 水平序 Graham 扫描算法 + 运算符重载

    水平序 Graham 扫描算法: 计算二维凸包的时候可以用到,Graham 扫描算法有水平序和极角序两种. 极角序算法能一次确定整个凸包, 但是计算极角需要用到三角函数,速度较慢,精度较差,特殊情况较 ...

  9. NYOJ 737---石子归并(GarsiaWachs算法)

    原题链接 描述    有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求 ...

随机推荐

  1. C#对excel的操作

    本文先描述如何用c#连接.操作excel文件. 项目中需要引入的DLL文件为Interop.Excel.Interop.Microsoft.Office.Core.Interop.Office等. 操 ...

  2. 面向对象之继承(Day24)

    一.继承 1.什么是继承 继承是一种创建新类的方式,在Python中,新建的类可以继承一个或多个父类,父类又可称为基类或超类,新建的类称为派生类或子类 2.继承与抽象(先抽象再继承) 抽象基抽取类似或 ...

  3. python常用模块——sys模块

    sys模块的功能很多,下面介绍几个常用的模块. 1.sys.argv:从外部向程序内部传递参数 #!/usr/bin/env python import sys print(sys.argv[0]) ...

  4. django.contirb

    Django标准库   Django的标准库存放在 django.contrib 包中.每个子包都是一个独立的附加功能包. 这些子包一般是互相独立的,不过有些django.contrib子包需要依赖其 ...

  5. Linux基础系列:常用命令(2)

    作业一: 1) 新建用户natasha,uid为1000,gid为555,备注信息为“master” groupadd -g 555 natasha useradd -u 1000 -g 555 -c ...

  6. ODS

    一般在带有ODS的系统体系结构中,ODS都设计为如下几个作用: 1.在业务系统和数据仓库之间形成一个隔离层 一般的数据仓库应用系统都具有非常复杂的数据来源,这些数据存放在不同的地理位置.不同的数据库. ...

  7. css系列(7)成品网页

        本节介绍用css和html组合起来写的页面.(代码可以直接运行)     (1)仿旧版腾讯微博注册页面:(文件夹地址:http://files.cnblogs.com/files/MenAng ...

  8. MySQL数据库基本操作(四)

    在进行查询之前,我们要先建好关系表,并往数据表中插入些数据.为查询操作做好准备. 五张关系表的创建: #创建并进入数据库: mysql> CREATE DATABASE `info`; Quer ...

  9. windows 服务安装报错

    使用windows服务开发的定时任务,在win7上都运行良好,在windows server 2008上运行报错,报错信息如下 错误应用程序名称: GCWindowsService.exe,版本: 1 ...

  10. 在Visual Studio中使用VueJS时,不可以用 v-bind 的简写 : 及 v-on的简写 @

    在Visual Studio中使用VueJS时,不可以用 v-bind 的简写 : 及 v-on的简写 @ 一方面 @符号和 Razor引擎冲突, 另外,当使用VS的格式化代码功能时, 会把 html ...