题目链接

 /*
Name:nyoj-253-LK的旅行
Copyright:
Author:
Date: 2018/4/27 15:01:36
Description:
zyj的模板
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = ;
struct Point
{
int x, y;
Point(int _x = , int _y = )
{
x = _x;
y = _y;
}
Point operator - (const Point &b)const
{
return Point(x - b.x, y - b.y);
}
int operator ^(const Point &b)const
{
return x * b.y - y * b.x;
}
int operator *(const Point &b)const
{
return x * b.x + y * b.y;
}
void input()
{
scanf("%d%d", &x, &y);
return ;
}
};
// 距离的平方
int dist2(Point a, Point b)
{
return (a - b) * (a - b);
} // 二维凸包
Point list[MAXN];
int Stack[MAXN], top;
bool _cmp(Point p1, Point p2)
{
int tmp = (p1 - list[]) ^ (p2 - list[]);
if (tmp > )
{
return true;
}
else if (tmp == && dist2(p1, list[]) <= dist2(p2, list[]))
{
return true;
}
else
{
return false;
}
}
void Graham(int n)
{
Point p0;
int k = ;
p0 = list[];
for (int i = ; i < n; i++)
{
if (p0.y > list[i].y || (p0.y == list[i].y && p0.x > list[i].x))
{
p0 = list[i];
k = i;
}
}
swap(list[k], list[]);
sort(list + , list + n, _cmp);
if (n == )
{
top = ;
Stack[] = ;
return ;
}
if (n == )
{
top = ;
Stack[] = ;
Stack[] = ;
return ;
}
Stack[] = ;
Stack[] = ;
top = ;
for (int i = ; i < n; i++)
{
while (top > && ((list[Stack[top - ]] - list[Stack[top - ]]) ^ (list[i] - list[Stack[top - ]])) <= )
{
top--;
}
Stack[top++] = i;
}
return ;
}
// 旋转卡壳,求两点间距离平方的最大值
int rotating_calipers(Point p[],int n)
{
int ans = ;
Point v;
int cur = ;
for (int i = ; i < n; i++)
{
v = p[i] - p[(i + ) % n];
while ((v ^ (p[(cur + ) % n] - p[cur])) < )
{
cur = (cur + ) % n;
}
ans = max(ans, max(dist2(p[i], p[cur]), dist2(p[(i + ) % n], p[(cur + ) % n])));
}
return ans;
}
Point p[MAXN];
int main()
{
int n;
cin>>n;
while (n--)
{
int m;
cin>>m;
for (int i = ; i < m; i++)
{
list[i].input();
}
Graham(m);
for (int i = ; i < top; i++)
{
p[i] = list[Stack[i]];
}
printf("%d\n", rotating_calipers(p, top));
}
return ;
}

nyoj-253-LK的旅行(Graham算法和旋转卡壳)的更多相关文章

  1. nyoj 253:LK的旅行 【旋转卡壳入门】

    题目链接 求平面最大点对. 找凸包 -> 根据凸包运用旋转卡壳算法求最大点对(套用kuang巨模板) 关于旋转卡壳算法 #include<bits/stdc++.h> using n ...

  2. Graham算法—二维点集VC++实现

    一.凸包定义 通俗的说就是:一组平面上的点,求一个包含所有点的最小凸多边形,这个最小凸多边形就是凸包. 二.Graham算法思想 概要:Graham算法的主要思想就是,最终形成的凸包,即包围所有点的凸 ...

  3. 平面凸包Graham算法

    板题hdu1348Wall 平面凸包问题是计算几何中的一个经典问题 具体就是给出平面上的多个点,求一个最小的凸多边形,使得其包含所有的点 具体形象就类似平面上有若干柱子,一个人用绳子从外围将其紧紧缠绕 ...

  4. nyoj_253:LK的旅行(旋转卡壳入门)

    题目链接 求平面最大点对. 找凸包 -> 根据凸包运用旋转卡壳算法求最大点对(套用kuang巨模板) 关于旋转卡壳算法 #include<bits/stdc++.h> using n ...

  5. poj 2187 凸包加旋转卡壳算法

    题目链接:http://poj.org/problem?id=2187 旋转卡壳算法:http://www.cppblog.com/staryjy/archive/2009/11/19/101412. ...

  6. LA 4728 旋转卡壳算法求凸包的最大直径

    #include<iostream> #include<cstdio> #include<cmath> #include<vector> #includ ...

  7. POJ2187 Beauty Contest (旋转卡壳算法 求直径)

    POJ2187 旋转卡壳算法如图 证明:对于直径AB 必然有某一时刻 A和B同时被卡住 所以旋转卡壳卡住的点集中必然存在直径 而卡壳过程显然是O(n)的 故可在O(n)时间内求出直径 凸包具有良好的性 ...

  8. POJ 2187 旋转卡壳 + 水平序 Graham 扫描算法 + 运算符重载

    水平序 Graham 扫描算法: 计算二维凸包的时候可以用到,Graham 扫描算法有水平序和极角序两种. 极角序算法能一次确定整个凸包, 但是计算极角需要用到三角函数,速度较慢,精度较差,特殊情况较 ...

  9. NYOJ 737---石子归并(GarsiaWachs算法)

    原题链接 描述    有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求 ...

随机推荐

  1. HAProxy安装及简单配置

    一.HAProxy简介 代理的作用:web缓存(加速).反向代理.内容路由(根据流量及内容类型等将请求转发至特定服务器).转码器(将后端服务器的内容压缩后传输给client端).缓存的作用:减少冗余内 ...

  2. Linux服务器基本信息查看

    Linux服务器基本信息通常包括如下几方面: CPU信息 内存使用信息 硬盘使用情况 服务器负载状况 其它参数 1.获取CPU的详细情况 [root@VM_41_84_centos ~]# cat / ...

  3. 剑指offer 面试42题

    面试42题: 题目:连续子数组的最大和 题:输入一个整形数组,数组里有正数也有负数.数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值.要求时间复杂度为O(n) 解题思路:在数组里从前 ...

  4. python中的关键字global和nonlocal

    知识点: global将一个变量变为全局变量 nonlocal改变最近的变量,又不是全局作用. 1.global 在python中,当引用一个变量的时候,对这个变量的搜索按找本地作用域(Local). ...

  5. 02 Spring框架 简单配置和三种bean的创建方式

    整理了一下之前学习Spring框架时候的一点笔记.如有错误欢迎指正,不喜勿喷. 上一节学习了如何搭建SpringIOC的环境,下一步我们就来讨论一下如何利用ioc来管理对象和维护对象关系. <? ...

  6. loadrunner之脚本篇——录制方式HTML-based和URL-based Script

    A.   HTML-based Script 针对 Web (HTTP/HTML)虚拟用户的缺省录制级别.它指示VuGen录制当前web页面上下文中的HTML action.录制会话期间并不录制所有资 ...

  7. js对象属性方法大总结(收集)

    数组(Array):系列元素的有序集合: 详细演示请看:[js入门系列演示·数组 ] http://www.cnblogs.com/thcjp/archive/2006/08/04/467761.ht ...

  8. 无法处理文件 MainForm.resx,因为它位于 Internet 或受限区域中,或者文件上具有 Web 标记。要想处理这些文件,请删除 Web 标记

    无法处理文件 MainForm.resx,因为它位于 Internet 或受限区域中,或者文件上具有 Web 标记.要想处理这些文件,请删除 Web 标记 问题: 由于文件锁定,VS不能正常读取. 解 ...

  9. 三 ip dns等配置

    一IP.端口.协议基本概念 ip的简单概念 互联网上的计算机,都会有一个唯一的32位的地址,ip地址 我们访问服务器,就必须通过ip地址 局域网里也有预留的ip地址  192/10/172.居于王的i ...

  10. Java I/O 小结

    主要内容: 一.输入流基类:InputStream 和 OutputStream(字节流). Reader 和 Writer(字符流) 二.文件字节流:FileInputStream和FileOutp ...