bzoj 3202 [Sdoi 2013] 项链 —— 置换+计数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3202
参考了博客:
https://www.cnblogs.com/zhoushuyu/p/9657640.html
https://www.cnblogs.com/DUXT/p/5957944.html?utm_source=itdadao&utm_medium=referral
https://blog.csdn.net/Maxwei_wzj/article/details/83184110
https://blog.csdn.net/a_crazy_czy/article/details/50688526
据 Narh 的想法,其实算珠子个数也可以从置换的角度,三棱柱有6种置换,循环节个数为1的有2个,个数为2的有3个,个数为3的有1个;
然后一个循环节内数字相同,于是也是那样算...
还不太懂 O(1) 快速乘...
注意模 P 和模 mod 。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=1e7+,P=1e9+;
ll const mod=(ll)P*P;int A,pri[xn],cnt,mu[xn],pk[xn],num;
ll n,m,ans,p[xn];//p!!
bool vis[xn];
void init()
{
mu[]=; int mx=1e7;
for(int i=;i<=mx;i++)
{
if(!vis[i])pri[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt&&(ll)i*pri[j]<=mx;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==){mu[i*pri[j]]=; break;}
mu[i*pri[j]]=-mu[i];
}
}
for(int i=;i<=mx;i++)mu[i]+=mu[i-];
}
ll mul(ll a,ll b){return (a*b-(ll)(((long double)a*b+0.5)/(long double)mod)*mod+mod)%mod;}
ll upt(ll x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
ll pw(ll a,ll b)
{
ll ret=; a=a%mod;
for(;b;b>>=1ll,a=mul(a,a))if(b&)ret=mul(ret,a);
return ret;
}
ll pw2(ll a,ll b)
{
ll ret=; a=a%P;
for(;b;b>>=1ll,a=(a*a)%P)if(b&)ret=(ret*a)%P;
return ret;
}
void div(ll x)
{
num=;
for(int i=;i<=cnt&&(ll)pri[i]*pri[i]<=x;i++)
{
if(x%pri[i])continue;
p[++num]=pri[i]; pk[num]=;
while(x%pri[i]==)pk[num]++,x/=pri[i];
}
if(x>)p[++num]=x,pk[num]=;
}
ll calf(ll x)
{
ll tmp;
if(x&)tmp=upt(-m); else tmp=upt(m-);
return upt(pw(upt(m-),x)+tmp);
}
void dfs(int nw,ll d,ll phi)
{
if(nw==num+){ans=upt(ans+mul(calf(n/d),phi)%mod); return;}
dfs(nw+,d,phi);
d*=p[nw]; phi*=p[nw]-; dfs(nw+,d,phi);
for(int i=;i<=pk[nw];i++)
d*=p[nw],phi*=p[nw],dfs(nw+,d,phi);
}
int main()
{
int T; init();
scanf("%d",&T);
while(T--)
{
scanf("%lld%d",&n,&A);
//if(n%P==0)mod=(ll)P*P; else mod=P;//??
ll ans2=,ans3=;
for(ll i=,j;i<=A;i=j+)
{
j=A/(A/i);
ans2=upt(ans2+mul(mul(A/i,A/i),mu[j]-mu[i-]+mod)%mod);
ans3=upt(ans3+mul(mul(mul(A/i,A/i),A/i),mu[j]-mu[i-]+mod)%mod);
}
m=upt(ans3+mul(ans2,)); m=upt(m+);
m=mul(m,pw(,(ll)P*(P-)-)%mod);//phi[mod]-1 div(n); ans=; dfs(,,); if(n%P==)ans=(ans/P*pw2(n/P,P-))%P;//P-2
else ans=(ans%P*pw2(n%P,P-))%P;//pw,mul:%mod
printf("%lld\n",ans);
}
return ;
}
bzoj 3202 [Sdoi 2013] 项链 —— 置换+计数的更多相关文章
- [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)
[BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...
- BZOJ 3203 sdoi 2013 保护出题人
由于样例解释很清晰,所以很容易得到以下结论: 1.每一关都是独立的,且僵尸的相对位置不会变 2.每一关的攻击力=Max(sum(i)/dis(i)) 其实sum(i)是僵尸攻击力的前缀和,dis(i) ...
- [BZOJ 3167][HEOI 2013]SAO
[BZOJ 3167][HEOI 2013]SAO 题意 对一个长度为 \(n\) 的排列作出 \(n-1\) 种限制, 每种限制形如 "\(x\) 在 \(y\) 之前" 或 & ...
- [BZOJ 1879][SDOI 2009]Bill的挑战 题解(状压DP)
[BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关 ...
- [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...
- [BZOJ 3173] [TJOI 2013] 最长上升子序列(fhq treap)
[BZOJ 3173] [TJOI 2013] 最长上升子序列(fhq treap) 题面 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数 ...
- BZOJ 3236 AHOI 2013 作业 莫队+树状数组
BZOJ 3236 AHOI 2013 作业 内存限制:512 MiB 时间限制:10000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目大意: 此时己是凌晨两点,刚刚做了Co ...
- [BZOJ 3144][HNOI 2013] 切糕
题目大意 切糕是 (p times q times r) 的长方体,每个点有一个违和感 (v_{x, y, z}).先要水平切开切糕(即对于每个纵轴,切面与其有且只有一个交点),要求水平上相邻两点的切 ...
- bzoj 3202 [Sdoi2013]项链——容斥+置换+推式子
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3202 可见Zinn博客:https://www.cnblogs.com/Zinn/p/100 ...
随机推荐
- PHP的垃圾回收机制以及大概实现
垃圾回收,简称gc.顾名思义,就是废物重利用的意思.再说这个之前先接触一下内存泄露,大概意思就是申请了一块地儿拉了会儿屎,拉完之后不收拾,那么这块地就算糟蹋了,地越用越少,最后一地全是屎.说到底一句, ...
- Win32 API编程:WinMain无法重载函数或_tWinMain无法重载
#include "windows.h" #include "tchar.h" int APIENTRY _tWinMain( HINSTANCE hInsta ...
- INSPIRED启示录 读书笔记 - 第13章 产品原则
确定什么最重要 产品原则是对团队信仰和价值观的总结,用来指导产品团队作出正确的决策和取舍.它体现了产品团队的目标和愿景,是产品战略的重要组成部分.从形式上看,它是一系列明确的.体现团队特色的产品价值准 ...
- 如何用hexo+github搭建个人博客
搭建环境 1.安装 Node.js: https://nodejs.org/en/ windows下点击链接,下载安装即可;Linux下更加简单,在终端下输入sudo apt-get install ...
- js 元素高度宽度整理
1.1只读属性 所谓的只读属性指的是DOM节点的固有属性,该属性只能通过js去获取而不能通过js去设置,而且获取的值是只有数字并不带单位的(px,em等),如下: 1)clientWidth和clie ...
- Windows命令行乱码问题解决
命令 chcp功能: 显示或设置活动代码页编号 CHCP [nnn] nnn 指定代码页编号. 不加参数键入 CHCP 显示活动代码页编号. nnn指定一已有的系统字符集,该字符集在CONFIG.SY ...
- Linux内核之进程(1)
进程:程序执行的一个实例,在Linux源代码中,常把进程称为任务(task)或者线程(thread). 从内核观点来看,进程的目的是担当分配系统资源(CPU的时间.内存等)的实体. 当一个进程创建时, ...
- JavaWeb -- http-equiv=refresh跳转的时候出现Session 丢失, 解决办法。。
<html> <head> <meta http-equiv="Content-Type" content="text/html; char ...
- Qt 安装事件过滤器installEventFilter
Qt 安装事件过滤器installEventFilter (2013-01-28 14:29:18) 转载▼ 分类: 工作笔记 Qt的事件模型一个强大的功能是一个QObject对象能够监视发送其他 ...
- nova Flavors
$ nova help | grep flavor- flavor-access-add Add flavor access for the given tenant. flavor-access-l ...