◆HDU-5215◆ Cycle

国庆节集训的第三天……讲图论,心情愉快……刷了一堆水题,不过也刷了一些有意思的题

+传送门+ HDU


▶ 题目

给出一个无向图(无自环,无重边),求该无向图中是否存在奇环、偶环。

多组数据,每组数据第一行为n,m表示点和边的数量,接下来m行每行描述一条边。

对于每组数据,输出两行,第一行输出是否存在奇环,第二行输出是否存在偶环。


▶ 解析

因为是一个简单图,这道题就简单了很多。

(1)判断奇环

有一类图是不包含奇数环的——二分图,反过来也是这样——二分图是不包含奇数环的图,所以不是二分图的图就一定包含奇数图。我们就只需要判断原图是否是二分图即可~ 黑白染色判断二分图就可以了。

(2)判断偶环

重点和难点基本上就在这儿了。

我们知道对于每一个连通块我们可以生成一棵DFS树,树上存在树边和返祖边(对这方面知识不熟的reader们建议先学了DFS树再看)。而一些树边和一条返祖边就会构成一个环——如果一条返祖边的两端点在DFS树上的路径距离为奇数,那么加上返祖边就形成了一个偶环。

当然形成偶环也不止这一个情况——看下面两种:

所以总结一下——另一种情况,存在两组点(a,b)(c,d),a与b、c与d在树上的距离都为偶数(如果为奇数的话加上一条返祖边就可以直接形成偶数环了),且a->b和c->d的路径相交(点相交即可),那么就存在偶环,即路径2+路径3。

如上图所示,两个返祖边的端点之间的树边有交集 路径1 ,所以它们可以形成偶数环。

(3)具体实现

听起来像需要2次DFS,但是其实只需要一次——DFS可以同时实现判断二分图和树边、返祖边。

由于可能存在多个连通块,所以依次枚举起点u,如果u没有访问过,则从u开始遍历连通块,同时将u先染色。

若当前在节点u,则通过邻接表遍历u的儿子v,注意枚举v时要将v到达u的父亲的情况舍去。若发现v没有被遍历过,则将v染色后继续从v点遍历;否则经过了一条返祖边,判断v的颜色:

① col[v] ≠ col[u] : 则u->v的路径为奇数,二分图染色成功,存在偶环;

② col[v] = col[u] : 则u->v的理解为偶数,存在奇环;遍历u->v的路径,如果路径上有点已经被打上标记,则说明有另外一条返祖边的两端点之间的路径与当前u->v的路径相交,存在偶环,否则将 u->v 的路径上的点全部打上标记;

输出即可。


▶ 源代码

 /*Lucky_Glass*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N=int(1e5);
int n,m;
vector<int> lnk[N+];
int col[N+],fa[N+],dep[N+];
bool cov[N+];
bool odd,eve;
void DFS(int u,int pre){
for(int i=;i<(int)lnk[u].size();i++){
int v=lnk[u][i];
if(v==pre) continue;
if(col[v]==-){
col[v]=!col[u];
fa[v]=u;
dep[v]=dep[u]+;
DFS(v,u);
}
else{
if(col[v]==col[u]){
odd=true;
if(dep[v]>dep[u]) continue; //upd. 每条返祖边只能走一次!
if(cov[v]) eve=true;
else cov[v]=true;
int pnt=u;
while(!eve){
if(cov[pnt]) eve=true;
cov[pnt]=true;
pnt=fa[pnt];
if(pnt==v || pnt==-) break;
}
}
else eve=true;
}
}
}
void Clear(){
memset(cov,false,sizeof cov);
memset(fa,-,sizeof fa);
memset(lnk,,sizeof lnk);
memset(col,-,sizeof col);
memset(dep,,sizeof dep);
odd=eve=false;
}
int main(){
int T;scanf("%d",&T);
while(T--){
Clear();
scanf("%d%d",&n,&m);
for(int i=;i<m;i++){
int u,v;
scanf("%d%d",&u,&v);
lnk[u].push_back(v);
lnk[v].push_back(u);
}
for(int i=;i<=n;i++)
if(col[i]==-){
col[i]=;
dep[i]=;
DFS(i,-);
}
printf("%s\n%s\n",odd?"YES":"NO",eve?"YES":"NO");
}
return ;
}

  


The End

Thanks for reading!

- Lucky_Glass

(Tab:如果我有没讲清楚的地方可以直接在邮箱lucky_glass@foxmail.com email我,在周末我会尽量解答并完善博客~

【杂题总汇】HDU-5215 Cycle的更多相关文章

  1. 【杂题总汇】HDU多校赛第十场 Videos

    [HDU2018多校赛第十场]Videos 最后一场比赛也结束了…… +HDU传送门+ ◇ 题目 <简要翻译> 有n个人以及m部电影,每个人都有一个快乐值.每场电影都有它的开始.结束时间和 ...

  2. 【杂题总汇】AGC027 C - ABland Yard

    ◆AGC027◆C - ABland Yard 终于知道为什么比赛的时候这么多人做C题了…… +传送门+(这是beta版的) ◇ 题目(自己翻译的,不要在意细节……) P.S. (@ 2018-9-2 ...

  3. 【杂题总汇】Codeforces-67A Partial Teacher

    [Codeforces-67A]Partial Teacher 上周刷了一大堆小紫薯的动态规划的题

  4. 【杂题总汇】NOIP2013(洛谷P1967) 货车运输

    [洛谷P1967] 货车运输 重做NOIP提高组ing... +传送门-洛谷P1967+ ◇ 题目(copy from 洛谷) 题目描述 A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道 ...

  5. 【杂题总汇】UVa-1336 Fixing the Great Wall

    [UVA-1336]Fixing the Great Wall 一开始把题看错了……直接用的整数存储答案:之后用double存最后输出答案的时候取整就AC了

  6. 【杂题总汇】HDU-6406 Taotao Picks Apples

    [HDU 6406]Taotao Picks Apples 多校赛的时候多写了一行代码就WA了……找了正解对拍,在比赛结束后17分钟AC了

  7. HDU.5215.Cycle(判环)

    题目链接 \(Description\) 给定\(n\)个点\(m\)条边的无向图,问是否存在一个长度为奇数/偶数的简单环. \(n\leq 10^5,m\leq 3\times 10^5\). \( ...

  8. hdu 5215 Cycle

    题意:找到一个图中是否含有奇环和偶环 题解: 1.用了两种发法.一个就是跟bc给的答案一样,先求弱联通分量.再在环中找奇偶环 2.我想到的一个略微省些代码量的方法.边求联通分量,边推断是否含有奇环偶环 ...

  9. HDU 5215 Cycle(dfs判环)

    题意 题目链接 \(T\)组数据,给出\(n\)个点\(m\)条边的无向图,问是否存在一个奇环/偶环 Sol 奇环比较好判断吧,直接判是否是二分图就行了.. 偶环看起来很显然就是如果dfs到一个和他颜 ...

随机推荐

  1. 从零开始的全栈工程师——JS面向对象( 原型 this 继承)

    一.生成对象的方式 ①单例模式(字面量定义)var obj = {} ②类的实例 var obj = new Object( ) ③工厂模式 ④构造函数:扮演三种角色 普通函数 普通对象 类 工厂模式 ...

  2. cf1072D. Minimum path(BFS)

    题意 题目链接 给出一个\(n \times n\)的矩阵,允许修改\(k\)次,求一条从\((1, 1)\)到\((n, n)\)的路径.要求字典序最小 Sol 很显然的一个思路是对于每个点,预处理 ...

  3. Android自定义之流式布局

    流式布局,好处就是父类布局可以自动的判断子孩子是不是需要换行,什么时候需要换行,可以做到网页版的标签的效果.今天就是简单的做了自定义的流式布局. 具体效果: 原理: 其实很简单,Measure  La ...

  4. 生成centos7 安装脚本

    [root@us-1-217 install]# cat gen7.py #!/usr/bin/env python # -*- coding: utf-8 -*- import os, crypt ...

  5. IIS10搭建FTP服务

    1.首先是基本搭建 http://jingyan.baidu.com/article/0bc808fc408fa91bd585b94f.html 2.计算机—管理----本地用户和组----本地用户- ...

  6. CentOS 7 使用 yum 安装 jdk 1.8

    安装之前先检查一下系统有没有自带open-jdk 命令: rpm -qa |grep java rpm -qa |grep jdk rpm -qa |grep gcj 如果没有输入信息表示没有安装. ...

  7. 【Leetcode】【Easy】Add Binary

    Given two binary strings, return their sum (also a binary string). For example,a = "11"b = ...

  8. python3的学习经验

    网上资料非常多,颇有些“乱花渐欲迷人眼”的意味,个人看了不少,拖之前从事前端的福,发现廖雪峰大神的网站里有.学了2天之后发觉获益良多,网址:https://www.liaoxuefeng.com/wi ...

  9. C# 调用 c++ 非托管dll时wchar类型参数的乱码处理

    [DllImport("user32.dll", CallingConvention = CallingConvention.WinApi)] public static exte ...

  10. ThinkPHP5专题

    TinkPHP5中 1. model中select()后的查询结果是对象而不是数组 2. model中 假如有 $result=$this->field($fields)->where($ ...