Python数据分析(二)pandas缺失值处理
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
print('################缺失值判断######################')
print('--------Series的缺失值判断---------')
print (df['one'].isnull())
'''
--------Series的缺失值判断---------
a False
b True
c False
d True
e False
f False
g True
h False
Name: one, dtype: bool
'''
print('---------输出Series缺失值和索引--------')
print(df['one'][df['one'].isnull()])
'''
---------输出Series缺失值和索引--------
b NaN
d NaN
g NaN
Name: one, dtype: float64
'''
print('--------dataframe的缺失值判断---------')
print(df.isnull())
'''
--------dataframe的缺失值判断---------
one two three
a False False False
b True True True
c False False False
d True True True
e False False False
f False False False
g True True True
h False False False
'''
print('--------输出dataframe的缺失值和索引---------')
data = df[df.isnull().values==True]
print(data[~data.index.duplicated()])
'''
--------输出dataframe的缺失值和索引---------
one two three
b NaN NaN NaN
d NaN NaN NaN
g NaN NaN NaN
'''
print('--------输出dataframe的有缺失值的列---------')
print(df.isnull().any())
'''
--------输出dataframe的有缺失值的列---------
one True
two True
three True
dtype: bool
'''
print('################缺失值过滤######################')
print('--------Series的缺失值过滤---------')
print(df['one'].isnull())
'''
################缺失值过滤######################
--------Series的缺失值过滤---------
a False
b True
c False
d True
e False
f False
g True
h False
Name: one, dtype: bool
'''
print('--------使用dropna方法删除缺失数据,返回一个删除后的Series--------')
print(df['one'].dropna())
'''
--------使用dropna方法删除缺失数据,返回一个删除后的Series--------
a -0.211055
c -0.870090
e -0.203259
f 0.490568
h 1.437819
Name: one, dtype: float64
'''
print('--------dataframe的缺失值过滤---------')
print(df.dropna())
'''
--------dataframe的缺失值过滤---------
one two three
a -0.211055 -2.869212 0.022179
c -0.870090 -0.878423 1.071588
e -0.203259 0.315897 0.495306
f 0.490568 -0.968058 -0.999899
h 1.437819 -0.370934 -0.482307
'''
print('-------当行全为NaN的时候,才删除,参数how默认是any,含有缺失值就删除--------')
print(df.dropna(how="all"))
'''
-------当行全为NaN的时候,才删除,参数how默认是any,含有缺失值就删除--------
one two three
a -0.211055 -2.869212 0.022179
c -0.870090 -0.878423 1.071588
e -0.203259 0.315897 0.495306
f 0.490568 -0.968058 -0.999899
h 1.437819 -0.370934 -0.482307
'''
print('################缺失值填充######################')
print('------指定特殊值填充缺失值-------')
print(df.fillna(0))
'''
################缺失值填充######################
------指定特殊值填充缺失值-------
one two three
a -0.211055 -2.869212 0.022179
b 0.000000 0.000000 0.000000
c -0.870090 -0.878423 1.071588
d 0.000000 0.000000 0.000000
e -0.203259 0.315897 0.495306
f 0.490568 -0.968058 -0.999899
g 0.000000 0.000000 0.000000
h 1.437819 -0.370934 -0.482307
'''
print('------不同的列用不同的值填充------')
print(df.fillna({'one':1,'two':2,'three':3}))
'''
------不同的列用不同的值填充------
one two three
a -0.211055 -2.869212 0.022179
b 1.000000 2.000000 3.000000
c -0.870090 -0.878423 1.071588
d 1.000000 2.000000 3.000000
e -0.203259 0.315897 0.495306
f 0.490568 -0.968058 -0.999899
g 1.000000 2.000000 3.000000
h 1.437819 -0.370934 -0.482307
'''
print('------前向填充------')
print(df.fillna(method="ffill"))
'''
------前向填充------
one two three
a -0.211055 -2.869212 0.022179
b -0.211055 -2.869212 0.022179
c -0.870090 -0.878423 1.071588
d -0.870090 -0.878423 1.071588
e -0.203259 0.315897 0.495306
f 0.490568 -0.968058 -0.999899
g 0.490568 -0.968058 -0.999899
h 1.437819 -0.370934 -0.482307
'''
print('------后向填充------')
print(df.fillna(method="bfill"))
'''
------后向填充------
one two three
a -0.211055 -2.869212 0.022179
b -0.870090 -0.878423 1.071588
c -0.870090 -0.878423 1.071588
d -0.203259 0.315897 0.495306
e -0.203259 0.315897 0.495306
f 0.490568 -0.968058 -0.999899
g 1.437819 -0.370934 -0.482307
h 1.437819 -0.370934 -0.482307
'''
print('------平均值填充------')
print(df.fillna(df.mean()))
'''
------平均值填充------
one two three
a -0.211055 -2.869212 0.022179
b 0.128797 -0.954146 0.021373
c -0.870090 -0.878423 1.071588
d 0.128797 -0.954146 0.021373
e -0.203259 0.315897 0.495306
f 0.490568 -0.968058 -0.999899
g 0.128797 -0.954146 0.021373
h 1.437819 -0.370934 -0.482307
'''
Python数据分析(二)pandas缺失值处理的更多相关文章
- Python数据分析(二): Pandas技巧 (1)
第一部分: ipython http://www.cnblogs.com/cgzl/p/7623347.html 第二部分: numpy http://www.cnblogs.com/cgzl/p/7 ...
- Python数据分析(二): Pandas技巧 (2)
Pandas的第一部分: http://www.cnblogs.com/cgzl/p/7681974.html github地址: https://github.com/solenovex/My-Ma ...
- Python数据分析之pandas基本数据结构:Series、DataFrame
1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 ...
- Python数据分析库pandas基本操作
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...
- Python 数据分析:Pandas 缺省值的判断
Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 No ...
- Python数据分析之pandas学习
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...
- Python数据分析之pandas
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...
- Python数据分析之Pandas操作大全
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...
- Python数据分析(二): Numpy技巧 (1/4)
In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np
- Python数据分析(二): Numpy技巧 (2/4)
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性. 昨天晚上发了第一 ...
随机推荐
- Maven里面多环境下的属性过滤(配置)
情景:通常一个项目都为分为开发环境(dev)和测试环境(test)还有正式环境(prod),如果每次一打包都要手动地去更改配置文件,例如数据库连接配置.将会很容易出差错. 解决方案:maven pro ...
- JVM——Java内存区域
一,概述: Java跟C++不同,在内存管理区域C++程序员拥有着最高权力,但是正是因为如此,所以C++程序员要照顾这个对象的生老病死,从创建到消亡都是由程序员决定的. 但是Java程序员在虚拟机的自 ...
- Mysqldump自定义导出n条记录
很多时候DBA需要导出部分记录至开发.测试环境,因数据量需求较小,如果原库的记录多,且表数量也多,在用mysqldump命令导出时可以添加一个where参数,自定义导出n条记录,而不必全量导出. 示例 ...
- nodeJs 对 Mysql 数据库的 curd
var mysql = require('mysql'); var connection = mysql.createConnection({ host : 'localhost', user : ' ...
- hadoop生态搭建(3节点)-04.hadoop配置
如果之前没有安装jdk和zookeeper,安装了的请直接跳过 # https://www.oracle.com/technetwork/java/javase/downloads/java-arch ...
- 当安装mongodb客户端出现了Failed to load list of databases
在装mongodb最新版(4.1.5开发版)服务后,我用robo3t打开它的时候遇到了这个问题. 最直接的解决办法就是换一个mongodb版本,https://github.com/Studio3T/ ...
- R语言绘图:时间序列分析
ggplot2绘制 arima诊断图 library(ggfortify) autoplot(acf(gold[,2], plot = FALSE)) ggtsdiag(auto.arima(gold ...
- C# String函数
public static bool IsNullOrEmpty(string value) 如果 true 参数为 value 或空字符串 (""),则为 null:否则为 fa ...
- quartz 使用总结
quartz是一个任务调度框架,具体的用途比如说,我想我的程序在每天的3点干什么事,每隔多长时间做一件什么事.quartz框架就可以完美地解决这些. 1.xml配置方式 首先我是用spring来管理的 ...
- Kotlin怎样使用Android的Dagger2
作者:Antonio Leiva 时间:Apr 11, 2017 原文链接:https://antonioleiva.com/dagger-android-kotlin/ 在Android上,创建去耦 ...