题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\sum\limits_{i=l}^r f(i)(1\leqslant l\leqslant 10^{14},1\leqslant r\leqslant 1.6\times10^{14},r-l>10^{14}$

题解:可知$f(x)$为$x$的因数个数,可以把$\sum\limits_{i=l}^rf(i)$拆成$\sum\limits_{i=1}^rf(i)-\sum\limits_{i=1}^lf(i)$。
$$
\def\dsum{\displaystyle\sum\limits}
\def\dprod{\displaystyle\prod\limits}
\begin{align*}
f(p)&=\dprod_{i=1}^n(k_{p,i}+1)\\
    &=\dsum_{i=1}^n[i|p]\\
\end{align*}\\
带回原式
$$

$$
\def\dsum{\displaystyle\sum\limits}
\def\dprod{\displaystyle\prod\limits}
\begin{align*}
令g(p)&=\dsum_{x=1}^pf(x)\\
    &=\dsum_{x=1}^p\dsum_{i=1}^x[i|x]\\
    &=\dsum_{i=1}^p\big\lfloor\dfrac p i\big\rfloor\\
\end{align*}
$$

整除分块即可。

卡点:1.读入时忘记开$long\;long$

C++ Code:

#include <cstdio>
using namespace std;
const int mod = 998244353;
long long l, r;
long long solve(long long n) {
long long ans = 0, l, r;
for (l = 1; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans + (r - (l - 1)) * (n / l)) % mod;
}
return ans;
}
int main() {
scanf("%lld%lld", &l, &r);
printf("%lld\n", (solve(r) - solve(l - 1) + mod) % mod);
return 0;
}

[洛谷P3935]Calculating的更多相关文章

  1. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  2. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

  3. 洛谷 - P3935 - Calculating - 整除分块

    https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...

  4. 洛谷 P3935 Calculating

    虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的 http://www.cnblogs.com/xzz_233/p/8365414.html 测正确性题目:https://www.l ...

  5. 洛谷 P3935 Calculating 题解

    原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...

  6. [洛谷3935]Calculating

    题目链接:https://www.luogu.org/problemnew/show/P3935 首先显然有\(\sum\limits_{i=l}^rf(i)=\sum\limits_{i=1}^rf ...

  7. 洛谷P3935 Calculation [数论分块]

    题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...

  8. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  9. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

随机推荐

  1. 操作BOM

    BOM的作用是将相关的元素组织包装起来,提供给程序设计人员使用,从而降低开发人员的劳动量,提高设计Web页面的能力. 整个window对象是整个BOM的核心. 通过BOM可实现的功能: 弹出新的浏览器 ...

  2. 进一步理解 frame 和 bounds

    总结一下 iOS中 frame 和 bounds之间的区别    综述 frame和bounds都是描述一块矩形区域,但是他们是有区别的 frame:可视范围,可以理解为控件的大小,把控件当作边缘很薄 ...

  3. 【TCP/IP实现磁盘资源的分享-----ISCSI(互联网最小应用程序接口)】

    Iscsi server: 首先把多块磁盘合并为RAID5,便于后期iscis client访问以及服务端的管理 安装 targted服务端包,以及targtedcli创建iscsi TCP/IP共享 ...

  4. docker理论基础

    Namespaces 命名空间(namespaces)是 Linux 为我们提供的用于分离进程树.网络接口.挂载点以及进程间通信等资源的方法.在日常使用 Linux 或者 macOS 时,我们并没有运 ...

  5. ctf题目writeup(9)

    继续刷题,找到一个 什么 蓝鲸安全的ctf平台 地址:http://whalectf.xin/challenges (话说这些ctf平台长得好像) 1. 放到converter试一下: 在用十六进制转 ...

  6. shell重温---基础篇(printf命令&test命令)

    在shell中还有一个输出的命令,那就是printf了.它模仿的是C程序库(library)里的printf()程序,是由POSIX标准所定义,所以嘞,使用printf脚本比echo移植性要好一点,它 ...

  7. IDEA中SVN的使用

    文件红色:表示文件没有添加到服务器 绿色:表示没有更新新的修改到服务器 普通黑色:表示和服务器同步 1.如何让修改的文件的父文件也变成蓝色(未提交的状态) 2.其中的1.6 format 1.7 fo ...

  8. android ActionBar 去掉menu分隔线

    自定义Theme继承原来Theme修改其中的分隔线: <item name="actionBarDivider">@null</item>  低版本设置 & ...

  9. 关于cookie的一些学习笔记

    0x00 发现自己对一些原理性的东西实在是太不了解 最近看了<cookie之困>记一下笔记 0x01 因为http是无状态的 所以需要cookie和session来保持http的会话状态和 ...

  10. oracle杀死锁表的进程(转发+合并+自己实践)

    之一: Oracle数据库操作中,我们有时会用到锁表查询以及解锁和kill进程等操作 (1)锁表查询的代码有以下的形式:select count(*) from v$locked_object;sel ...