P1268 树的重量
题目描述
树可以用来表示物种之间的进化关系。一棵“进化树”是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异。现在,一个重要的问题是,根据物种之间的距离,重构相应的“进化树”。
令N={1..n},用一个N上的矩阵M来定义树T。其中,矩阵M满足:对于任意的i,j,k,有M[i,j] + M[j,k] >= M[i,k]。树T满足:
1.叶节点属于集合N;
2.边权均为非负整数;
3.dT(i,j)=M[i,j],其中dT(i,j)表示树上i到j的最短路径长度。
如下图,矩阵M描述了一棵树。
树的重量是指树上所有边权之和。对于任意给出的合法矩阵M,它所能表示树的重量是惟一确定的,不可能找到两棵不同重量的树,它们都符合矩阵M。你的任务就是,根据给出的矩阵M,计算M所表示树的重量。下图是上面给出的矩阵M所能表示的一棵树,这棵树的总重量为15。
输入输出格式
输入格式:
输入数据包含若干组数据。每组数据的第一行是一个整数n(2<n<30)。其后n-1行,给出的是矩阵M的一个上三角(不包含对角线),矩阵中所有元素是不超过100的非负整数。输入数据保证合法。
输入数据以n=0结尾。
输出格式:
对于每组输入,输出一行,一个整数,表示树的重量。
输入输出样例
5
5 9 12 8
8 11 7
5 1
4
4
15 36 60
31 55
36
0
15
71
Solution:
本题很有意思的思维题(话说期末考崩了啊,本来想数学拉分的,结果数学也炸了,好崩心态啊!滚粗搞竞赛!)。
题意等价于给定一棵树的$n$个叶子节点之间的最短路径,且$d[i][j]+d[j][k]\geq d[i][k]$,需要求出满足条件的树的边权和(我们不必在乎点具体所在位置,只需考虑长度的贡献)。
首先不难想到的是当只有两个叶子节点时,显然答案为$d[1][2]$。
而当$n==3$时,因为要满足标号节点均为叶子节点,所以多出的$3$号叶子节点必定只能由$G[1][2]$之间多出一条分枝相连,如图:
那么多出的分枝长度显然为$\frac{d[1][3]+d[2][3]-d[1][2]}{2}$。
当$n==4$时,还是得满足均为叶子节点的限制,所以多出的节点显然只能在$G[1][2]$或$G[1][3]$或$G[2][3]$这三条分枝上再接一条分枝与$4$相连,如图:
容易发现,此时多出的长度为$min(\frac{d[1][4]+d[2][4]-d[1][2]}{2},\frac{d[1][4]+d[3][4]-d[1][3]}{2},\frac{d[2][3]+d[3][4]-d[2][4]}{2})$。
不难发现每次多出的$n$号节点,需要枚举在前$n-1$个节点互相之间的路径上多出分枝的情况,取最小值累加。
那么实现时直接模拟就好了。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
int n,mp[][],ans,tp; il int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return a;
} int main(){
while(scanf("%d",&n)!=EOF&&n){
For(i,,n-) For(j,i+,n) mp[i][j]=mp[j][i]=gi();
ans=mp[][];
For(i,,n){
tp=0x7fffffff;
For(j,,i-) For(k,,j-)
tp=min(tp,(mp[j][i]+mp[k][i]-mp[j][k])>>);
ans+=tp;
}
printf("%d\n",ans);
}
return ;
}
P1268 树的重量的更多相关文章
- 洛谷P1268 树的重量
P1268 树的重量 85通过 141提交 题目提供者该用户不存在 标签树形结构 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 有这种情况吗!!!! 题意似乎有问题 题目描述 树可以用来表 ...
- 洛谷 P1268 树的重量 解题报告
P1268 树的重量 题目描述 树可以用来表示物种之间的进化关系.一棵"进化树"是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题 ...
- 洛谷—— P1268 树的重量
P1268 树的重量 构造类题目,看不出个所以然来... emmm,只好看题解: 只有两个点,那一条路径就是$ans$ 考虑三个点,那么$3$这个点相对于树上的路径(已经加入树上的边的距离) 为:$( ...
- [Luogu P1268] 树的重量 (巧妙的构造题)
题面 传送门:https://www.luogu.org/problemnew/show/P1268 Solution 这是一道极其巧妙的构造题 先做一个约定[i,j]表示从i到j的距离 我们可以先从 ...
- 洛谷P1268 树的重量 【构造 + 枚举】
题目描述 树可以用来表示物种之间的进化关系.一棵"进化树"是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之间的距离 ...
- P1268 树的重量【构造】
题目描述 树可以用来表示物种之间的进化关系.一棵“进化树”是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之间的距离,重构相应的“进化树 ...
- P1268 树的重量(板子)
题目: 题目描述 树可以用来表示物种之间的进化关系.一棵"进化树"是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之 ...
- luogu p1268 树的重量——构造,真正考验编程能力
题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题 ...
- 【luogu P1268 树的重量】 题解
题目链接:https://www.luogu.org/problemnew/show/P1268 给定所有点间的最短路求原图所有路径和 形如: 我们需要计算红边+绿边 绿边 = (红边+蓝边+紫边)/ ...
随机推荐
- 企业Shell面试题及企业运维实战案例(三)
1.企业Shell面试题1:批量生成随机字符文件名案例 使用for循环在/oldboy目录下批量创建10个html文件,其中每个文件需要包含10个随机小写字母加固定字符串oldboy,名称示例如下: ...
- DevOps - 版本控制 - GitHub
README Badges 徽章 Shields.io: Quality metadata badges for open source projects 徽章 官网:https://shields ...
- let's encrypt部署免费泛域名证书
环境说明 [root@localhost ~]# cat /etc/redhat-release CentOS Linux release 7.5.1804 (Core) [root@localhos ...
- Maven命令参数
命令参数 备注 mvn -v --version 显示版本信息; mvn -V --show-version 显示版本信息后继续执行Maven其他目标; mvn -h --help 显示帮助信息; m ...
- 电子商城实录------定义init初始化的方法
路由方法的设置 //路由方法 private static function dispatch(){ //获取控制器名称(类比:英文单词的后缀) $controller_name=CONTROLLER ...
- 使用C6748和C5509A对nRF24L01驱动进行数据传输
1. 写在前面 今天下午做了一个C5509A和C6748两个DSP的数据传输,经由RF24L01设备传输,都是模拟SPI协议,对于两个DSP来说,无非是配GPIO引脚,写好时序和延时.C5509A的G ...
- 安装java 和 eclipse
昨天安装eclipse出现个问题, 安装完了创建第一个项目目录的时候弹窗报错an ......什么什么, 百度一堆没有用,后来发现是jdk12不支持,换了jdk8就可以了, 然后eclipse安装py ...
- stm32+lwip(四):网页服务器测试
我是卓波,很高兴你来看我的博客. 系列文章: stm32+lwip(一):使用STM32CubeMX生成项目 stm32+lwip(二):UDP测试 stm32+lwip(三):TCP测试 stm32 ...
- LocalDate相关方法
getYear() int 获取当前日期的年份 getMonth() Month 获取当前日期的月份对象 getMonthValue() int 获取当前日期是第几月 getDayOfWeek() D ...
- Python入门及容易!网摘分享给大家!
Python:Python学习总结 背景 PHP的$和->让人输入的手疼(PHP确实非常简洁和强大,适合WEB编程),Ruby的#.@.@@也好不到哪里(OO人员最该学习的一门语言). Pyth ...