STM32CubeMX教程15 ADC - 多重ADC转换
1、准备材料
STM32CubeMX软件(Version 6.10.0)
keil µVision5 IDE(MDK-Arm)
3个滑动变阻器
2、实验目标
使用STM32CubeMX软件配置STM32F407开发板的ADC实现多重ADC采集,具体为使用ADC1_IN5、ADC2_IN6实现二重ADC采集,使用ADC1_IN5、ADC2_IN6和ADC3_IN5实现三重ADC采集
3、二重ADC转换
3.0、前提知识
STM32F407的三个ADC可以组合实现多重ADC采集,当仅仅开启一个ADC时,该ADC只能工作在独立模式;当同时启动ADC1和ADC2,则以ADC1为主器件,ADC2为从器件可以工作在双重ADC采集模式下;当同时启动ADC1/2/3,则以ADC1为主器件,ADC2/3为从器件可以工作在三重ADC采集模式下;
在多重 ADC 模式下可实现以下6种模式
- 二/三重注入同时模式 + 规则同时模式
- 二/三重规则同时模式 + 交替触发模式
- 二/三重注入同时模式
- 二/三重规则同时模式
- 二/三重交替模式
- 二/三重交替触发模式
本实验我们只介绍二/三重规则同时模式,如下图所示为CubeMX配置中可选的所有模式

工作在多重ADC模式下的DMA请求拥有三种DMA模式,这里只介绍DMA access mode 1/2,不会涉及DMA access mode 3
二重规则同时模式ADC采集时只能选择DMA access mode 2,三重规则同时模式ADC采集时只能选择DMA access mode 1
下面请读者重点理解采集完成的数据是如何通过DMA存入用户定义好的数组中的!
当ADC工作在二重规则同时模式下,此时DMA模式为DMA access mode 2,在ADC1或ADC2转换事件结束时,会生成一个32位DMA传输请求,此请求会将存储在 ADC_CDR 32 位寄存器高位半字中的 ADC2 转换数据传输到SRAM,然后将存储在ADC_CCR低位半字中的ADC1转换数据传输到 SRAM,也就是说我们只需定义一个包含一个元素的uint32_t DataBuffer[1]数组,以DMA方式启动ADC转换后,只需每次从高16位读取ADC2采集的数据,从低16位读取ADC1采集的数据即可
当ADC工作在三重规则同时模式下,此时DMA模式为DMA access mode 1,在ADC1、ADC2或ADC3转换事件结束时,会生成三个32位DMA传输请求,之后会发生三次从 ADC_CDR 32 位寄存器到SRAM的传输:首先传输 ADC1 转换数据,然后是 ADC2 转换数据,最后是 ADC3 转换数据,也就是说我们需定义一个包含三个元素的uint32_t DataBuffer[3]数组,其中第一个元素DataBuffer[0]表示ADC1采集的数据,第二个元素DataBuffer[1]表示ADC2采集的数据,第三个元素DataBuffer[2]表示ADC3采集的数据
上述描述如下图所示 (注释1)



如下图所示为多重ADC框图,当工作在二重ADC时不存在ADC3,ADC1/2/3三个ADC只有ADC1为主ADC,当以多重ADC工作时,只需要配置主ADC的DMA传输,从ADC无需设置,在启动多重ADC采集时也只能以DMA方式启动主ADC,从ADC以普通方式启动即可,不能将从ADC也以DMA方式启动,多重ADC采集的数据均会存入32位的通用规则数据寄存器中

3.1、CubeMX相关配置
3.1.0、工程基本配置
打开STM32CubeMX软件,单击ACCESS TO MCU SELECTOR选择开发板MCU(选择你使用开发板的主控MCU型号),选中MCU型号后单击页面右上角Start Project开始工程,具体如下图所示


开始工程之后在配置主页面System Core/RCC中配置HSE/LSE晶振,在System Core/SYS中配置Debug模式,具体如下图所示


详细工程建立内容读者可以阅读“STM32CubeMX教程1 工程建立”
3.1.1、时钟树配置
系统时钟使用8MHz外部高速时钟HSE,HCLK、PCLK1和PCLK2均设置为STM32F407能达到的最高时钟频率,具体如下图所示

3.1.2、外设参数配置
本实验需要需要初始化USART1作为输出信息渠道,具体配置步骤请阅读“STM32CubeMX教程9 USART/UART 异步通信”
设置TIM3通用定时器溢出时间100ms,外部触发事件选择更新事件,参数详解请阅读“STM32CubeMX教程6 TIM 通用定时器 - 生成PWM波”实验,具体配置如下图所示

在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC1,勾选IN5通道
Mode (ADC模式):修改为Dual regular simultaneous mode only(需要启用ADC2通道才可以选择二重ADC采集模式)
DMA Access Mode (DMA模式):选择DMA access mode 2
DMA Continuous Requests (DMA连续转化请求):使能(需要先增加DMA请求才可以使能)
其他参数与“STM32CubeMX教程13 ADC - 单通道转换”实验均保持一致,具体配置如下图所示

单击Configuration中的DMA Settings选项卡对ADC1的DMA请求进行设置,所有配置均与“STM32CubeMX教程14 ADC - 多通道DMA转换”实验保持一致,具体配置如下图所示

在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC2,勾选IN6通道,注意除 Rank 和 DMA Continuous Requests 参数外所有参数配置必须与ADC1保持一致,否则ADC采集将出现错误,具体配置如下图所示

3.1.3、外设中断配置
在Pinout & Configuration页面左边System Core/NVIC中勾选DMA2 Stream0 全局中断,然后选择合适的中断优先级即可,具体配置如下图所示

3.2、生成代码
3.2.0、配置Project Manager页面
单击进入Project Manager页面,在左边Project分栏中修改工程名称、工程目录和工具链,然后在Code Generator中勾选“Gnerate peripheral initialization as a pair of 'c/h' files per peripheral”,最后单击页面右上角GENERATE CODE生成工程,具体如下图所示


详细Project Manager配置内容读者可以阅读“STM32CubeMX教程1 工程建立”实验3.4.3小节
3.2.1、外设初始化调用流程
请阅读“STM32CubeMX教程14 ADC - 多通道DMA转换”实验“3.2.1、外设初始化调用流程”小节
3.2.2、外设中断调用流程
请阅读“STM32CubeMX教程14 ADC - 多通道DMA转换”实验“3.2.2、外设中断调用流程”小节
3.2.3、添加其他必要代码
在adc.c中重新实现ADC转换完成回调函数HAL_ADC_ConvCpltCallback(),具体代码如下所示
源代码如下
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
/*定时器中断启动DMA二重ADC转换*/
uint32_t Volt1,Volt2;
uint32_t adcValue=DataBuffer[0];
/*从低16位取出ADC1采集数据*/
uint32_t ADC1_val=adcValue & 0x0000FFFF;
Volt1=3300*ADC1_val;
Volt1=Volt1>>12;
/*从高16位取出ADC2采集数据*/
uint32_t ADC2_val=adcValue & 0xFFFF0000;
ADC2_val= ADC2_val>>16;
Volt2=3300*ADC2_val;
Volt2=Volt2>>12;
printf("Volt1:%d, Volt2:%d\r\n",Volt1,Volt2);
}
在主函数main中启动二重ADC转化,一些全局变量定义及启动源代码如下
/*main.c全局变量定义*/
uint32_t DataBuffer[BATCH_DATA_LEN];
/*main.h变量声明*/
#define BATCH_DATA_LEN 1
extern uint32_t DataBuffer[BATCH_DATA_LEN];
/*ADC启动代码*/
HAL_ADC_Start(&hadc2);
HAL_ADCEx_MultiModeStart_DMA(&hadc1,DataBuffer,BATCH_DATA_LEN);
HAL_TIM_Base_Start(&htim3);
为什么二重ADC转化下DMA要将数据传输到uint32 DataBuffer[1]?
二重ADC转化下DMA模式为DMA access mode 2,在该模式下ADC1转换完成的数据会传输到32位的 DataBuffer[0] 的低16位,而ADC2转换完成的数据会传输到32位的 DataBuffer[0] 的高16位
4、常用函数
/*多重ADC以DMA方式启动*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length)
5、烧录验证
烧录程序,单片机上电之后,串口不断的输出ADC1_IN5、ADC2_IN6的采集值转化为的电压值,笔者将两个滑动变阻器按照ADC1_IN5、ADC2_IN6的顺序,分别从一端缓慢拧到另一端,可以从串口输出的数据看到,三个通道采集到的电压值从最小值0慢慢变到最大3300

6、三重ADC转换
6.1、CubeMX相关配置
在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC3,勾选IN5通道,所有参数与二重ADC转换ADC2参数一致,在配置ADC1为三重ADC规则通道采集时ADC3的触发源参数会消失,因此无需理会,具体ADC3参数配置如下图所示

在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC1,将其模式修改为Triple regular simultaneous mode only,DMA模式修改为DMA access mode 1
ADC1的其他参数与二重ADC转换时的参数一致,ADC2的配置、ADC1 DMA的配置和NVIC的设置均与二重ADC采集一致,具体ADC1参数配置如下图所示

6.2、添加其他必要代码
/*main.c全局变量定义*/
uint32_t DataBuffer[BATCH_DATA_LEN];
/*main.h变量声明*/
#define BATCH_DATA_LEN 3
extern uint32_t DataBuffer[BATCH_DATA_LEN];
/*主函数中ADC启动代码*/
HAL_ADC_Start(&hadc2);
HAL_ADC_Start(&hadc3);
HAL_ADCEx_MultiModeStart_DMA(&hadc1,DataBuffer,BATCH_DATA_LEN);
HAL_TIM_Base_Start(&htim3);
/*adc.c中重新实现转换完成中断回调*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
/*定时器中断启动DMA三重ADC转换*/
uint32_t val=0,Volt=0;
for(uint8_t i=0;i<BATCH_DATA_LEN;i++)
{
val=DataBuffer[i];
Volt=(3300*val)>>12;
printf("ADC%d, val:%d, Volt:%d\r\n",i,val,Volt);
}
printf("\r\n");
}
为什么三重ADC转化下DMA要将数据传输到uint32 DataBuffer[3]?
二重ADC转化下DMA模式为DMA access mode 1,在该模式下ADC1转换完成的数据会传输到32位的 DataBuffer[0],ADC2转换完成的数据会传输到32位的 DataBuffer[1],ADC3转换完成的数据会传输到32位的 DataBuffer[2]
6.3、实验现象
烧录程序,单片机上电之后,串口不断的输出ADC1_IN5、ADC2_IN6和ADC3_IN5的采集值,笔者将三个滑动变阻器按照ADC1_IN5、ADC2_IN6和ADC3_IN5的顺序,分别从一端缓慢拧到另一端,可以从串口输出的数据看到,三个通道采集到的ADC数据从最小值0慢慢变到最大4095

7、注释详解
注释1:图片来源STM32F4xx中文参考手册
8、参考资料
主要参考STM32Cube高效开发教程(基础篇)320页14.6小节实验
笔者认为该章节提到一个BUG其实是错误的,从ADC不应该以DMA方式启动,也无需在STM32CubeMX生成的工程代码中手动修改DMAContinuousRequests为ENABLE


更多内容请浏览 STM32CubeMX+STM32F4系列教程文章汇总贴
STM32CubeMX教程15 ADC - 多重ADC转换的更多相关文章
- STM32使用HAL库实现ADC单通道转换
STM32的ADC转换还是很强大的,它具有多个通道选择,这里我就不细说,不了解的可以自行百度,这里只是选取单通道,实现ADC转换.在文章开始之前,我说一下数据左对齐跟右对齐的差别,以前一直糊里糊涂的, ...
- stm32 ADC模数转换 ADC多通道 ADC DMA
通过调节电位器,改变AD转换值和电压值 STM32F1 ADC 配置步骤 1.使能GPIO时钟和ADC时钟 2.配置引脚模式为模拟输入 3.配置ADC的分频因子 4.初始化ADC参数,ADC_Init ...
- [译]Vulkan教程(15)图形管道基础之RenderPass
[译]Vulkan教程(15)图形管道基础之RenderPass Render passes Setup 设置 Before we can finish creating the pipeline, ...
- 深度学习与计算机视觉教程(15) | 视觉模型可视化与可解释性(CV通关指南·完结)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- [SQL基础教程] 1-5 表的删除和更新
[SQL基础教程] 1-5 表的删除和更新 表的删除 语法 DROP TABLE <表名>; 法则 1-12 删除的表无法恢复 表定义的更新 语法 ALTER TABLE<表名> ...
- [ADC]Linux ADC驱动
ADC TI adc user guide: http://processors.wiki.ti.com/index.php/Linux_Core_ADC_Users_Guide 问题: 在tools ...
- Directx11教程(15) D3D11管线(4)
原文:Directx11教程(15) D3D11管线(4) 本章我们首先了解一下D3D11中的逻辑管线,认识一下管线中每个stage的含义. 参考资料:http://fgiesen.wordpress ...
- 3、CC2541芯片中级教程-OSAL操作系统(ADC光敏电阻和修改串口波特率)
本文根据一周CC2541笔记汇总得来—— 适合概览和知识快速索引—— 全部链接: 中级教程-OSAL操作系统\OSAL操作系统-实验01 OSAL初探 [插入]SourceInsight-工程建立方法 ...
- 玩转X-CTR100 l STM32F4 l ADC 模拟数字转换
我造轮子,你造车,创客一起造起来!塔克创新资讯[塔克社区 www.xtark.cn ][塔克博客 www.cnblogs.com/xtark/ ] 本文介绍X-CTR100控制器 AD转换接 ...
- PaintCode 教程:矢量图轻松转换成CoreGraphics代码
本文译自Ranwenderlich的这篇:http://www.raywenderlich.com/100281/paintcode-for-designers-getting-started Pai ...
随机推荐
- java固定窗口大小
this.setResizable(false);//////frame.setResizable(false)
- 【算法】状态之美,TCP/IP状态转换探索
最近城市里甲流肆虐,口罩已经成为了出门必备的物品.小悦也不得不开始采取防护措施,上下班过程中,将口罩戴起来以保护自己不受病毒的侵害. 每天下班后,小悦总是喜欢投入到自己的兴趣爱好中,她热衷于翻阅与IT ...
- 6款AI工具网站,赶紧收藏,以备不时之需
1.海鲸AI-支持AI对话.AI文档解析.AI绘画 海鲸AI-基于新一代人工智能技术,只需输入问题,即可得到智能回答 https://www.weijiwangluo.com/talk/ 海鲸AI是 ...
- DataGtip的永久激活方法(Windows2021-2023版本均可)
一.打开DataGrip 出现以下界面即显示需要激活,否则无法使用,这里打开后点击Exit退出 二.下载激活包 1.下载激活包准备激活 下载链接: 链接:https://pan.baidu.com/s ...
- 【案例教程】LoadRunner订票系统WebTours部署
题目: 使用LoadRunner自带的测试项目--航班订票管理系统WebTours,网站地址为:http://127.0.0.1:1080/WebTours/ (用户名为jojo,密码为bean),完 ...
- UMP系统概述
突出性能: 1.低成本,高性能 2.开源数据库 UMP在设计时要实现一下原则: 多租户:
- Chrome扩展的核心:manifest 文件(下)
大家好,我是 dom 哥.这是我关于 Chrome 扩展开发的系列文章,感兴趣的可以 点个小星星. 在上篇和中篇中已经完成了对 manifest 文件中以下字段的解释: "manifest_ ...
- BigQuant*中金财富“启明星”创新量化交易大赛开启,月月都拿奖
来量化比赛,赢万元大奖!! 比赛时间 2022年8月1日-2023年3月31日 比赛地址 启明星创新量化交易大赛 比赛简介 BigQuant与中金财富联合举办的创新量化交易大塞正式启动了! 本次大赛旨 ...
- Python笔记一之excel的读取
本文首发于公众号:Hunter后端 原文链接:Python笔记一之excel的读取 这里我常用的 python 对于 excel 的读取库有两个,一个是 xlsxwriter 用于操作 excel 的 ...
- Volcano 原理、源码分析(一)
0. 总结前置 1. 概述 2. Volcano 核心概念 2.1 认识 Queue.PodGroup 和 VolcanoJob 2.2. Queue.PodGroup 和 VolcanoJob 的关 ...