1、准备材料

开发板(正点原子stm32f407探索者开发板V2.4

STM32CubeMX软件(Version 6.10.0

keil µVision5 IDE(MDK-Arm

ST-LINK/V2驱动

野火DAP仿真器

XCOM V2.6串口助手

3个滑动变阻器

2、实验目标

使用STM32CubeMX软件配置STM32F407开发板的ADC实现多重ADC采集,具体为使用ADC1_IN5、ADC2_IN6实现二重ADC采集,使用ADC1_IN5、ADC2_IN6和ADC3_IN5实现三重ADC采集

3、二重ADC转换

3.0、前提知识

STM32F407的三个ADC可以组合实现多重ADC采集,当仅仅开启一个ADC时,该ADC只能工作在独立模式;当同时启动ADC1和ADC2,则以ADC1为主器件,ADC2为从器件可以工作在双重ADC采集模式下;当同时启动ADC1/2/3,则以ADC1为主器件,ADC2/3为从器件可以工作在三重ADC采集模式下;

在多重 ADC 模式下可实现以下6种模式

  1. 二/三重注入同时模式 + 规则同时模式
  2. 二/三重规则同时模式 + 交替触发模式
  3. 二/三重注入同时模式
  4. 二/三重规则同时模式
  5. 二/三重交替模式
  6. 二/三重交替触发模式

本实验我们只介绍二/三重规则同时模式,如下图所示为CubeMX配置中可选的所有模式

工作在多重ADC模式下的DMA请求拥有三种DMA模式,这里只介绍DMA access mode 1/2,不会涉及DMA access mode 3

二重规则同时模式ADC采集时只能选择DMA access mode 2,三重规则同时模式ADC采集时只能选择DMA access mode 1

下面请读者重点理解采集完成的数据是如何通过DMA存入用户定义好的数组中的!

当ADC工作在二重规则同时模式下,此时DMA模式为DMA access mode 2,在ADC1或ADC2转换事件结束时,会生成一个32位DMA传输请求,此请求会将存储在 ADC_CDR 32 位寄存器高位半字中的 ADC2 转换数据传输到SRAM,然后将存储在ADC_CCR低位半字中的ADC1转换数据传输到 SRAM,也就是说我们只需定义一个包含一个元素的uint32_t DataBuffer[1]数组,以DMA方式启动ADC转换后,只需每次从高16位读取ADC2采集的数据,从低16位读取ADC1采集的数据即可

当ADC工作在三重规则同时模式下,此时DMA模式为DMA access mode 1,在ADC1、ADC2或ADC3转换事件结束时,会生成三个32位DMA传输请求,之后会发生三次从 ADC_CDR 32 位寄存器到SRAM的传输:首先传输 ADC1 转换数据,然后是 ADC2 转换数据,最后是 ADC3 转换数据,也就是说我们需定义一个包含三个元素的uint32_t DataBuffer[3]数组,其中第一个元素DataBuffer[0]表示ADC1采集的数据,第二个元素DataBuffer[1]表示ADC2采集的数据,第三个元素DataBuffer[2]表示ADC3采集的数据

上述描述如下图所示 (注释1)

如下图所示为多重ADC框图,当工作在二重ADC时不存在ADC3,ADC1/2/3三个ADC只有ADC1为主ADC,当以多重ADC工作时,只需要配置主ADC的DMA传输,从ADC无需设置,在启动多重ADC采集时也只能以DMA方式启动主ADC,从ADC以普通方式启动即可,不能将从ADC也以DMA方式启动,多重ADC采集的数据均会存入32位的通用规则数据寄存器中

3.1、CubeMX相关配置

3.1.0、工程基本配置

打开STM32CubeMX软件,单击ACCESS TO MCU SELECTOR选择开发板MCU(选择你使用开发板的主控MCU型号),选中MCU型号后单击页面右上角Start Project开始工程,具体如下图所示

开始工程之后在配置主页面System Core/RCC中配置HSE/LSE晶振,在System Core/SYS中配置Debug模式,具体如下图所示

详细工程建立内容读者可以阅读“STM32CubeMX教程1 工程建立

3.1.1、时钟树配置

系统时钟使用8MHz外部高速时钟HSE,HCLK、PCLK1和PCLK2均设置为STM32F407能达到的最高时钟频率,具体如下图所示

3.1.2、外设参数配置

本实验需要需要初始化USART1作为输出信息渠道,具体配置步骤请阅读“STM32CubeMX教程9 USART/UART 异步通信

设置TIM3通用定时器溢出时间100ms,外部触发事件选择更新事件,参数详解请阅读“STM32CubeMX教程6 TIM 通用定时器 - 生成PWM波”实验,具体配置如下图所示

在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC1,勾选IN5通道

Mode (ADC模式):修改为Dual regular simultaneous mode only(需要启用ADC2通道才可以选择二重ADC采集模式)

DMA Access Mode (DMA模式):选择DMA access mode 2

DMA Continuous Requests (DMA连续转化请求):使能(需要先增加DMA请求才可以使能)

其他参数与“STM32CubeMX教程13 ADC - 单通道转换”实验均保持一致,具体配置如下图所示

单击Configuration中的DMA Settings选项卡对ADC1的DMA请求进行设置,所有配置均与“STM32CubeMX教程14 ADC - 多通道DMA转换”实验保持一致,具体配置如下图所示

在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC2,勾选IN6通道,注意除 Rank 和 DMA Continuous Requests 参数外所有参数配置必须与ADC1保持一致,否则ADC采集将出现错误,具体配置如下图所示

3.1.3、外设中断配置

在Pinout & Configuration页面左边System Core/NVIC中勾选DMA2 Stream0 全局中断,然后选择合适的中断优先级即可,具体配置如下图所示

3.2、生成代码

3.2.0、配置Project Manager页面

单击进入Project Manager页面,在左边Project分栏中修改工程名称、工程目录和工具链,然后在Code Generator中勾选“Gnerate peripheral initialization as a pair of 'c/h' files per peripheral”,最后单击页面右上角GENERATE CODE生成工程,具体如下图所示

详细Project Manager配置内容读者可以阅读“STM32CubeMX教程1 工程建立”实验3.4.3小节

3.2.1、外设初始化调用流程

请阅读“STM32CubeMX教程14 ADC - 多通道DMA转换”实验“3.2.1、外设初始化调用流程”小节

3.2.2、外设中断调用流程

请阅读“STM32CubeMX教程14 ADC - 多通道DMA转换”实验“3.2.2、外设中断调用流程”小节

3.2.3、添加其他必要代码

在adc.c中重新实现ADC转换完成回调函数HAL_ADC_ConvCpltCallback(),具体代码如下所示

源代码如下

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
/*定时器中断启动DMA二重ADC转换*/
uint32_t Volt1,Volt2;
uint32_t adcValue=DataBuffer[0]; /*从低16位取出ADC1采集数据*/
uint32_t ADC1_val=adcValue & 0x0000FFFF;
Volt1=3300*ADC1_val;
Volt1=Volt1>>12; /*从高16位取出ADC2采集数据*/
uint32_t ADC2_val=adcValue & 0xFFFF0000;
ADC2_val= ADC2_val>>16;
Volt2=3300*ADC2_val;
Volt2=Volt2>>12; printf("Volt1:%d, Volt2:%d\r\n",Volt1,Volt2);
}

在主函数main中启动二重ADC转化,一些全局变量定义及启动源代码如下

/*main.c全局变量定义*/
uint32_t DataBuffer[BATCH_DATA_LEN]; /*main.h变量声明*/
#define BATCH_DATA_LEN 1
extern uint32_t DataBuffer[BATCH_DATA_LEN]; /*ADC启动代码*/
HAL_ADC_Start(&hadc2);
HAL_ADCEx_MultiModeStart_DMA(&hadc1,DataBuffer,BATCH_DATA_LEN);
HAL_TIM_Base_Start(&htim3);

为什么二重ADC转化下DMA要将数据传输到uint32 DataBuffer[1]?

二重ADC转化下DMA模式为DMA access mode 2,在该模式下ADC1转换完成的数据会传输到32位的 DataBuffer[0] 的低16位,而ADC2转换完成的数据会传输到32位的 DataBuffer[0] 的高16位

4、常用函数

/*多重ADC以DMA方式启动*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length)

5、烧录验证

烧录程序,单片机上电之后,串口不断的输出ADC1_IN5、ADC2_IN6的采集值转化为的电压值,笔者将两个滑动变阻器按照ADC1_IN5、ADC2_IN6的顺序,分别从一端缓慢拧到另一端,可以从串口输出的数据看到,三个通道采集到的电压值从最小值0慢慢变到最大3300

6、三重ADC转换

6.1、CubeMX相关配置

在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC3,勾选IN5通道,所有参数与二重ADC转换ADC2参数一致,在配置ADC1为三重ADC规则通道采集时ADC3的触发源参数会消失,因此无需理会,具体ADC3参数配置如下图所示

在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC1,将其模式修改为Triple regular simultaneous mode only,DMA模式修改为DMA access mode 1

ADC1的其他参数与二重ADC转换时的参数一致,ADC2的配置、ADC1 DMA的配置和NVIC的设置均与二重ADC采集一致,具体ADC1参数配置如下图所示

6.2、添加其他必要代码

/*main.c全局变量定义*/
uint32_t DataBuffer[BATCH_DATA_LEN]; /*main.h变量声明*/
#define BATCH_DATA_LEN 3
extern uint32_t DataBuffer[BATCH_DATA_LEN]; /*主函数中ADC启动代码*/
HAL_ADC_Start(&hadc2);
HAL_ADC_Start(&hadc3);
HAL_ADCEx_MultiModeStart_DMA(&hadc1,DataBuffer,BATCH_DATA_LEN);
HAL_TIM_Base_Start(&htim3); /*adc.c中重新实现转换完成中断回调*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
/*定时器中断启动DMA三重ADC转换*/
uint32_t val=0,Volt=0;
for(uint8_t i=0;i<BATCH_DATA_LEN;i++)
{
val=DataBuffer[i];
Volt=(3300*val)>>12;
printf("ADC%d, val:%d, Volt:%d\r\n",i,val,Volt);
}
printf("\r\n");
}

为什么三重ADC转化下DMA要将数据传输到uint32 DataBuffer[3]?

二重ADC转化下DMA模式为DMA access mode 1,在该模式下ADC1转换完成的数据会传输到32位的 DataBuffer[0],ADC2转换完成的数据会传输到32位的 DataBuffer[1],ADC3转换完成的数据会传输到32位的 DataBuffer[2]

6.3、实验现象

烧录程序,单片机上电之后,串口不断的输出ADC1_IN5、ADC2_IN6和ADC3_IN5的采集值,笔者将三个滑动变阻器按照ADC1_IN5、ADC2_IN6和ADC3_IN5的顺序,分别从一端缓慢拧到另一端,可以从串口输出的数据看到,三个通道采集到的ADC数据从最小值0慢慢变到最大4095

7、注释详解

注释1:图片来源STM32F4xx中文参考手册

8、参考资料

主要参考STM32Cube高效开发教程(基础篇)320页14.6小节实验

笔者认为该章节提到一个BUG其实是错误的,从ADC不应该以DMA方式启动,也无需在STM32CubeMX生成的工程代码中手动修改DMAContinuousRequests为ENABLE

更多内容请浏览 STM32CubeMX+STM32F4系列教程文章汇总贴

STM32CubeMX教程15 ADC - 多重ADC转换的更多相关文章

  1. STM32使用HAL库实现ADC单通道转换

    STM32的ADC转换还是很强大的,它具有多个通道选择,这里我就不细说,不了解的可以自行百度,这里只是选取单通道,实现ADC转换.在文章开始之前,我说一下数据左对齐跟右对齐的差别,以前一直糊里糊涂的, ...

  2. stm32 ADC模数转换 ADC多通道 ADC DMA

    通过调节电位器,改变AD转换值和电压值 STM32F1 ADC 配置步骤 1.使能GPIO时钟和ADC时钟 2.配置引脚模式为模拟输入 3.配置ADC的分频因子 4.初始化ADC参数,ADC_Init ...

  3. [译]Vulkan教程(15)图形管道基础之RenderPass

    [译]Vulkan教程(15)图形管道基础之RenderPass Render passes Setup 设置 Before we can finish creating the pipeline, ...

  4. 深度学习与计算机视觉教程(15) | 视觉模型可视化与可解释性(CV通关指南·完结)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  5. [SQL基础教程] 1-5 表的删除和更新

    [SQL基础教程] 1-5 表的删除和更新 表的删除 语法 DROP TABLE <表名>; 法则 1-12 删除的表无法恢复 表定义的更新 语法 ALTER TABLE<表名> ...

  6. [ADC]Linux ADC驱动

    ADC TI adc user guide: http://processors.wiki.ti.com/index.php/Linux_Core_ADC_Users_Guide 问题: 在tools ...

  7. Directx11教程(15) D3D11管线(4)

    原文:Directx11教程(15) D3D11管线(4) 本章我们首先了解一下D3D11中的逻辑管线,认识一下管线中每个stage的含义. 参考资料:http://fgiesen.wordpress ...

  8. 3、CC2541芯片中级教程-OSAL操作系统(ADC光敏电阻和修改串口波特率)

    本文根据一周CC2541笔记汇总得来—— 适合概览和知识快速索引—— 全部链接: 中级教程-OSAL操作系统\OSAL操作系统-实验01 OSAL初探 [插入]SourceInsight-工程建立方法 ...

  9. 玩转X-CTR100 l STM32F4 l ADC 模拟数字转换

    我造轮子,你造车,创客一起造起来!塔克创新资讯[塔克社区 www.xtark.cn ][塔克博客 www.cnblogs.com/xtark/ ]      本文介绍X-CTR100控制器 AD转换接 ...

  10. PaintCode 教程:矢量图轻松转换成CoreGraphics代码

    本文译自Ranwenderlich的这篇:http://www.raywenderlich.com/100281/paintcode-for-designers-getting-started Pai ...

随机推荐

  1. 开发现代化的.NetCore控制台程序:(4)使用GithubAction自动构建以及发布nuget包

    前言 上一篇文章介绍了将 nuget 包发布到 Github Packages 上. 本文更进一步,使用 GitHub Action 搭建 CI/CD 流水线,进行 nuget 的自动构建和发布. G ...

  2. 万字长文:从 C# 入门学会 RabbitMQ 消息队列编程

    RabbitMQ 教程 目录 RabbitMQ 教程 RabbitMQ 简介 安装与配置 安装 RabbitMQ 发布与订阅模型 生产者.消费者.交换器.队列 多工作队列 交换器类型 Direct F ...

  3. 【ASP.NET Core】MVC过滤器:运行流程

    MVC 的过滤器(Filters)也翻译为"筛选器".但是老周更喜欢翻译为"过滤器",意思上更好理解. 既然都叫过滤器了,就是在MVC的操作方法调用前后进行特殊 ...

  4. 快速认识什么是:Kubernetes

    每次谈到容器的时候,除了Docker之外,都会说起 Kubernetes,那么什么是 Kubernetes呢?今天就来一起学快速入门一下 Kubernetes 吧!希望本文对您有所帮助. Kubern ...

  5. jdk21的外部函数和内存API(MemorySegment)(官方翻译)

    1.jdk21:   引入一个 API,通过该 API,Java 程序可以与 Java 运行时之外的代码和数据进行互操作.通过有效地调用外部函数(即JVM外部的代码)和安全地访问外部内存(即不由JVM ...

  6. vertx的学习总结4之异步数据和事件流

    一.异步数据和事件流 1.为什么流是事件之上的一个有用的抽象? 2.什么是背压,为什么它是异步生产者和消费者的基础? 3.如何从流解析协议数据? 1.  答:因为它能够将连续的事件序列化并按照顺序进行 ...

  7. IP交付标准总结。

    RTL顶层代码,IP内部需要IP自己完成连接并保证正确,CM/PLL/MCU/SRAM/TX/RX内部模块不接受外部进行拼接,DFT内部自己处理.IP用到的宏,名称功能文档要说明清楚.优先使用硬核IP ...

  8. Linux下^m符号删除

    Linux下^m符号删除 从Windows上复制的代码到Linux尾会有M字符,通过下命令可以删除. :%s/\r//

  9. 吉特日化MES & 医药行业相关专业术语汇总

  10. [ABC282E] Choose Two and Eat One

    Problem Statement A box contains $N$ balls, each with an integer between $1$ and $M-1$ written on it ...