Day2:期望DP​​

A - CF148D Bag of mice

设 \(dp_{i,j}\) 表示还剩下 \(i\) 只白鼠,\(j\) 只黑鼠 A 的胜率。

  • 大家都没有拿到白鼠,那么 B 赢,\(dp_{0,0}=0\)​。
  • 没有白鼠了,那么 B 赢,\(dp_{0,j}=0\)。
  • 全是白鼠了,那么 A 赢(A 先抓),\(dp_{i,0}=1\)​。

然后转移,有这几种情况:

  • 第一次就抓到白鼠:\(dp_{i,j}=\frac{i}{i+j}\)。
  • A 抓到黑鼠,B 抓到黑鼠,跑出来白鼠:\(dp_{i,j}=dp_{i-1,j-2}\times\frac{j}{i+j}\times\frac{j-1}{i+j-1}\times\frac{i}{i+j-2}\)(三个分数表示跑出这三种鼠的概率)
  • A 抓到黑鼠,B 抓到黑鼠,跑出来黑鼠:\(dp_{i,j}=dp_{i,j-3}\times\frac{j}{i+j}\times\frac{j-1}{i+j-1}\times\frac{j-2}{i+j-2}\)(三个分数表示跑出这三种鼠的概率)
  • 其他情况 A 都是输掉的,不用管他。

注意 2,3 两种情况对于剩余的黑白老鼠数量有要求。

#include <bits/stdc++.h>
using namespace std; double frac(int a,int b){return 1.0*a/b;}
double DP[1005][1005];
int w,b; int main()
{
scanf("%d%d",&w,&b); DP[0][0]=0; //都没抽到,B赢
for(int i=1;i<=w;i++) DP[i][0]=1; //全是白鼠,A赢
for(int j=1;j<=b;j++) DP[0][j]=0; //全是黑鼠,B赢 for(int i=1;i<=w;i++){
for(int j=1;j<=b;j++){
DP[i][j]+=1.0*i/(i+j); //先手直接抽到白鼠
if(i>=1&&j>=2) DP[i][j]+=DP[i-1][j-2]*frac(j,i+j)*frac(j-1,i+j-1)*frac(i,i+j-2); //A黑鼠,B黑鼠,跑白鼠
if(j>=3) DP[i][j]+=DP[i][j-3]*frac(j,i+j)*frac(j-1,i+j-1)*frac(j-2,i+j-2); //A黑鼠,B黑鼠,跑黑鼠
}
}
printf("%.9lf",DP[w][b]);
return 0;
}

B - P4316 绿豆蛙的归宿

拓扑+DP。

搞一个反图,跑拓扑的同时算期望:每个点的期望距离=(他所有前缀的期望距离+路径长度)*概率。

#include <bits/stdc++.h>
using namespace std; struct Graph{
int Val[200005],Go[200005],Deg[100005],Deg2[100005];
int Head[100005],Next[200005],tot;
void Add_edge(int u,int v,int w){++tot,Next[tot]=Head[u],Head[u]=tot,Val[tot]=w,Go[tot]=v,Deg[v]++,Deg2[v]++;}
}G; int node[100005],cnt;
double dis[100005];
int n,m,u,v,w;
queue<int>q; void TUPO(int u){
for(int i=1;i<=n;i++) if(G.Deg[i]==0) q.push(i);
while(!q.empty()){
int u=q.front();q.pop();
node[++cnt]=u;
for(int i=G.Head[u];i;i=G.Next[i]){
int v=G.Go[i];G.Deg[v]--;
dis[v]+=1.0*(dis[u]+G.Val[i])/G.Deg2[v];
if(G.Deg[v]==0){
q.push(v);
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
G.Add_edge(v,u,w);
}TUPO(n);
printf("%.2lf",dis[1]);
return 0;
}

C - CF768D Jon and Orbs

为什么感觉比 A,B 简单

设 \(dp_{i,j}\) 已经取了 \(i\) 次,取出了 \(j\) 种的概率,一共有 \(k\) 种,\(dp_{0,0}=1\)。

然后转移,有这几种情况:

  • 某一天抓到了已经抓过的,\(dp_{i,j}=dp_{i-1,j}\times\frac{j}{k}\)
  • 某一天抓到了没有抓过的,\(dp_{i,j}=dp_{i-1,j-1}\times\frac{k-j+1}{k}\)​

我们的 \(i\) 最大期望其实就是调和级数 \(O(n \ln n)\) 级别的,开个 \(10000\) 左右差不多,复杂度也可以。

预处理就好了,不要每一个询问算一次。

#include <bits/stdc++.h>
using namespace std;
const int maxn=10000; double DP[10005][1005];
int k,q,p[10005]; int main()
{
scanf("%d%d",&k,&q);
for(int i=1;i<=q;i++){
scanf("%d",&p[i]);
}
DP[0][0]=1;
for(int i=1;i<=maxn;i++){
for(int j=1;j<=k;j++){
DP[i][j]+=1.0*DP[i-1][j]*j/k;
DP[i][j]+=1.0*DP[i-1][j-1]*(k-j+1)/(k);
}
}
for(int i=1;i<=q;i++){
for(int j=1;j<=maxn;j++){
if(DP[j][k]>=p[i]/2000.0){
printf("%d\n",j);
break;
}
}
}
return 0;
}

D - P1365 WJMZBMR打osu! / Easy

不会。


E - P1850 [NOIP2016 提高组] 换教室

不会。


F - P2473 [SCOI2008] 奖励关

不会。


G - CF24D Broken robot

不会。


H - P3232 [HNOI2013] 游走

不会。

谢老师2024春 - Day2:期望DP的更多相关文章

  1. 2018.08.30 花园(期望dp)

    题目背景 SCOI2017 DAY2 T1 题目描述 小 A 的花园的长和宽分别是 L,H .小 A 喜欢在花园里做游戏.每次做游戏的时候,他都先把花园均匀分割成 L×H 个小方块,每个方块的长和宽都 ...

  2. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  3. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  4. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  5. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  6. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  7. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  8. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  9. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  10. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

随机推荐

  1. nginx proxy_set_header详解

    proxy_set_header 是 Nginx 配置中的一个重要指令,特别是在使用 Nginx 作为反向代理时.该指令允许你修改由 Nginx 传递给代理后端的请求头.这对于确保后端应用程序能够接收 ...

  2. ADS1299芯片datasheet 重点解析

    一 START和DRDY的关系 start必须要至少提前拉高2个时钟,才会产生DRDY信号,这个非常关键,也是重心所在.很多遗漏的就不会有DRDY信号出来了. 二 START和DRDY的时序图 sta ...

  3. Navicat 15下载教程

    Navicat 15下载_永久激活注册码(附图文安装教程) 欢迎关注博主公众号「java大师」, 专注于分享Java领域干货文章, 关注回复「资源」, 免费领取全网最热的Java架构师学习PDF, 转 ...

  4. hibernate之createQuery与createSQLQuery

    信息: java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to com.miracle.dm.doc.catalog.m ...

  5. 基于QGIS生产建筑物高度与遥感影像数据集

    1. 概述 利用遥感影像推知建筑物高度是一经典研究,现有很多学者利用机器学习的方式,利用现有数据进行训练从而构建模型 本文旨在记述使用QGIS进行建筑物高度与遥感影像数据集的获取与制作 如果不想自己动 ...

  6. 记录--让URL地址都变成了"ooooooooo"

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 发现一个很有创意的小工具网站,如封面图所示功能很简单,就是将一个URL地址转换为都是 ooooooooo 的样子,通过转换后的地址访问可以 ...

  7. 记录--一道js笔试题, 刷新了我对map方法函数的认知

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 背景 昨天在看一道笔试题的时候本以为很简单,但是结果不是我想象的那样,直接上笔试题. const array = new Array(5) ...

  8. 强烈推荐:2024 年12款 Visual Studio 亲测、好用、优秀的工具,AI插件等

    工具类扩展 1. ILSpy 2022 (免费) ILSpy 是 ILSpy 开源反编译器的 Visual Studio 扩展. 是一款开源.免费的.且适用于.NET平台反编译[C#语言编写的程序和库 ...

  9. 鸿蒙HarmonyOS实战-ArkUI组件(Progress)

    一.Progress Progress组件是一种用户界面(UI)元素,用于向用户显示某些任务的进度.它通常以进度条的形式出现,显示任务完成的百分比.Progress组件可以在确定任务持续时间未知的情况 ...

  10. js实现多列排序-存在问题

    js实现多列排序 根据业务逻辑调整 sortData 的数据. 排序的规则是按照第一列排序,第一列相同按照第二列排序,依次类推 // 要排序的数据 const array = [{ name: '甲' ...