数据的预处理是数据分析,或者机器学习训练前的重要步骤。
通过数据预处理,可以

  • 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性
  • 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集
  • 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加高效

本篇介绍的数据缩放处理,主要目的是消除数据的不同特征之间的量纲差异,使得每个特征的数值范围相同。这样可以避免某些特征对模型的影响过大,从而提高模型的性能。

1. 原理

数据缩放有多种方式,其中有一种按照最小值-最大值缩放的算法是最常用的。
其主要步骤如下:

  1. 计算数据列的最小值(min)和最大值(max
  2. 对数据列中的每个值进行最小-最大缩放,即将其转换为 **[0,1]区间 **之内的一个值

缩放公式为:\(new\_data = \frac{data -min}{max-min}\)

实现缩放的代码如下:

# 数据缩放的实现原理

data = np.array([10, 20, 30, 40, 50])
min = np.min(data)
max = np.max(data) data_new = (data - min) / (max-min) print("处理前: {}".format(data))
print("处理后: {}".format(data_new)) # 运行结果
处理前: [10 20 30 40 50]
处理后: [0. 0.25 0.5 0.75 1. ]

数值被缩放到 **[0,1]区间 **之内。
这个示例只是为了演示缩放的过程,实际场景中最好使用scikit-learn库中的函数。

scikit-learn中的minmax_scale函数是封装好的数据缩放函数。

from sklearn import preprocessing as pp

data = np.array([10, 20, 30, 40, 50])
pp.minmax_scale(data, feature_range=(0, 1)) # 运行结果
array([0. , 0.25, 0.5 , 0.75, 1. ])

使用scikit-learn中的minmax_scale函数得到的结果是一样的,数据也被压缩到 **[0,1]区间 **之内。
所以 数据缩放 的这个操作有时也被称为归一化

不过,数据缩放不一定非得把数据压缩到 **[0,1]区间 **之内,
通过调整feature_range参数,可以把数据压缩到任意的区间。

# 压缩到[0, 1]
print(pp.minmax_scale(data, feature_range=(0, 1))) # 压缩到[-1, 1]
print(pp.minmax_scale(data, feature_range=(-1, 1))) # 压缩到[0, 5]
print(pp.minmax_scale(data, feature_range=(0, 5))) # 运行结果
[0. 0.25 0.5 0.75 1. ]
[-1. -0.5 0. 0.5 1. ]
[0. 1.25 2.5 3.75 5. ]

2. 作用

数据缩放的作用主要有:

2.1. 统一数据尺度

通过缩放处理,将不同量纲、不同尺度、不同单位的数据转换成一个统一的尺度,
避免由于数据量纲不一致而导致的数据分析结果失真或误导。

2.2. 增强数据可比性

通过缩放处理,将不同量纲、不同尺度、不同单位的数据转换成一个统一的尺度,使得不同数据之间的比较更加方便和有意义。
例如,在评价多个样本的性能时,如果采用不同的量纲、不同尺度、不同单位进行比较,会导致比较结果不准确甚至误导。
通过统一的缩放处理之后,可以消除这种影响,使得比较结果更加准确可信。

2.3. 增强数据稳定性

通过缩放处理,将数据的数值范围调整到一个相对较小的区间内,
增加数据的稳定性,避免由于数据分布范围过大或过小而导致的分析误差或计算误差。

2.4. 提高算法效率和精度

通过缩放处理,使得一些计算算法的效率和精度得到提高。
例如,在神经网络算法中,如果输入数据的尺度过大或过小,会导致算法训练时间过长或过短,同时也会影响算法的精度和稳定性。
而缩放处理之后,就可以使算法的训练时间和精度得到优化。

3. 总结

scikit-learn库中,处理数据缩放不是只有上面的最小值-最大值缩放
还可用StandardScaler进行标准化缩放;用RobustScaler实现尺度缩放和平移等等。

进行数据缩放时,需要注意一点,就是缩放处理对异常值非常敏感,
如果数据中存在极大或者极小的异常值时,有可能会破坏原始数据本身。
所以,缩放处理前,最好把异常值过滤掉。

【scikit-learn基础】--『预处理』之 数据缩放的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. 『TensorFlow』TFR数据预处理探究以及框架搭建

    一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...

  3. Python基础『一』

    内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...

  4. Python基础『二』

    目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...

  5. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  6. 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理

    Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dat ...

  7. 『Matplotlib』数据可视化专项

    一.相关知识 官网介绍 matplotlib API 相关博客 matplotlib绘图基础 漂亮插图demo 使用seaborn绘制漂亮的热度图 fig, ax = plt.subplots(2,2 ...

  8. 『Numpy』内存分析_高级切片和内存数据解析

    在计算机中,没有任何数据类型是固定的,完全取决于如何看待这片数据的内存区域. 在numpy.ndarray.view中,提供对内存区域不同的切割方式,来完成数据类型的转换,而无须要对数据进行额外的co ...

  9. 『cs231n』计算机视觉基础

    线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...

  10. 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支

    下图Github地址:Mask_RCNN       Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...

随机推荐

  1. Vue3 中 keepAlive 如何搭配 VueRouter 来更自由的控制页面的状态缓存?

    在 vue 中,默认情况下,一个组件实例在被替换掉后会被销毁.这会导致它丢失其中所有已变化的状态--当这个组件再一次被显示时,会创建一个只带有初始状态的新实例.但是 vue 提供了 keep-aliv ...

  2. 聊聊HuggingFace Transformer

    概述 参见:聊聊HuggingFace 项目组件 一个完整的transformer模型主要包含三部分:Config.Tokenizer.Model. Config 用于配置模型的名称.最终输出的样式. ...

  3. VINS中的重力-尺度-速度初始化(2)

    VINS中的重力-尺度-速度初始化(2) 细化重力 \(\quad\)上一篇文章中得到的 \(g\) 一般是存在误差的.因为在实际应用中,当地的重力向量的模一般是已知固定大小的(所以只有两个自由度未知 ...

  4. OA管理系统源码

    介绍 oa管理系统,只有基本功能,可进行二次开发 软件架构 技术框架:Spring+SpringMVC+Mybatis+BootStrap 数据库:MySQL 服务器:JDK7+Tomcat7 安装教 ...

  5. 关于MySQL获取自增ID的几种方法

    1. Select Max(id) From Table; 通过取表字段最大值的方式来获取最近一次自增id 缺点: 这种方法在多人操作数据库的软件上不可靠, 举个例子, 你刚插入一条记录. 当你在查询 ...

  6. 回归克里格、普通克里格插值在ArcGIS中的实现

      本文介绍基于ArcMap软件,实现普通克里格.回归克里格方法的空间插值的具体操作. 目录 1 背景知识准备 2 回归克里格实现 2.1 采样点与环境变量提取 2.2 子集要素划分 2.3 异常值提 ...

  7. KRPano多屏互动原理

    KRPano可以实现多个屏幕之间的同步显示,主要应用到Websocket技术进行通信. 在控制端,我们需要发送当前KRPano场景的实时的视角和场景信息,可以使用如下的代码: embedpano({ ...

  8. WPF动画入门教程

    Windows Presentation Foundation (WPF)是一种用于创建Windows客户端应用程序的UI框架.它让我们能够创建丰富的图形界面,包括各种各样的动画效果.接下来,我们将介 ...

  9. vue + tornado 个人博客项目简介

    vue + tornado 个人博客项目简介 项目链接:https://www.freepd.top 项目链接:https://admin.freepd.top 项目简介 首页预览 本站接入了百度ap ...

  10. CSP-2023 初赛游记

    9.16 上午 今天就不早读了. 去前做了个 2019 的题,60 多分,感觉挺危. 去比赛前 30min 发现没带身份证,去宿舍拿的. 前 10min 发现没有笔,借了一些,但是发现还有一个小时才开 ...