Python遥感影像叠加分析:基于一景数据提取另一数据
本文介绍基于Python中GDAL模块,实现基于一景栅格影像,对另一景栅格影像的像元数值加以叠加提取的方法。
本文期望实现的需求为:现有一景表示6种不同植被类型的.tif格式栅格数据,以及另一景与前述栅格数据同区域的、表示植被参数的.tif格式栅格数据;我们希望基于前者中的植被类型数据,分别提取6种不同植被类型的植被参数数值。这里需要注意,两景栅格影像的行数、列数也都是一致的。
了解了具体需求后,我们即可开始代码的实践;本文用到的具体代码如下所示。
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 1 16:56:26 2022
@author: fkxxgis
"""
from osgeo import gdal
vt_file_path = "E:/LC_M/data/LC.tif"
lcc_file_path = "E:/LC_M/data/LC_Clip.tif"
vt_raster = gdal.Open(vt_file_path)
vt_array = vt_raster.ReadAsArray()
lcc_raster = gdal.Open(lcc_file_path)
lcc_array = lcc_raster.ReadAsArray()
raster_row, raster_col = vt_array.shape
li_1, li_2, li_3, li_4, li_5, li_6 = [ [] for i in range(6)]
for i in range(raster_row):
for j in range(raster_col):
if vt_array[i][j] == 1 and lcc_array[i][j] != 0:
li_1.append(lcc_array[i][j])
elif vt_array[i][j] == 2 and lcc_array[i][j] != 0:
li_2.append(lcc_array[i][j])
elif vt_array[i][j] == 3 and lcc_array[i][j] != 0:
li_3.append(lcc_array[i][j])
elif vt_array[i][j] == 4 and lcc_array[i][j] != 0:
li_4.append(lcc_array[i][j])
elif vt_array[i][j] == 5 and lcc_array[i][j] != 0:
li_5.append(lcc_array[i][j])
elif vt_array[i][j] == 6 and lcc_array[i][j] != 0:
li_6.append(lcc_array[i][j])
其中,vt_file_path为表示植被类型的栅格数据,lcc_file_path为表示植被参数的栅格数据。
代码的整体思路其实也非常简单,首先通过gdal.Open()函数与.ReadAsArray()函数,分别读取两个栅格数据,并将两个栅格数据中的像元数值信息转换为数组格式;随后,因为表示不同植被类型的.tif格式栅格数据共有6种不同的像元数值,因此我们通过[] for i in range(6)这句代码,批量创建6个空的列表,用于存放6种不同植被类型分别对应的植被参数数值;接下来,同时遍历两个栅格数据,并基于表示不同植被类型的.tif格式栅格数据的像元数值,将表示植被参数的.tif格式栅格数据的像元数值依次提取、放入不同的列表中。
这里有一点需要注意,因为在表示植被参数的.tif格式栅格数据中0为无效值,因此在提取时,加了一个是否为0的判断;这一点大家在实际应用时结合自己的需求加以修改即可。
通过上述代码,我们即可将6种不同植被类型分别对应的植被参数数值提取出来,并存放于不同的列表中;随后即可基于不同列表中的数据加以各项空间分析。
Python遥感影像叠加分析:基于一景数据提取另一数据的更多相关文章
- Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜
本文介绍基于Python语言中gdal模块,对遥感影像数据进行栅格读取与计算,同时基于QA波段对像元加以筛选.掩膜的操作. 本文所要实现的需求具体为:现有自行计算的全球叶面积指数(LAI).t ...
- Python gdal读取MODIS遥感影像并结合质量控制QC波段掩膜数据
本文介绍基于Python中GDAL模块,实现MODIS遥感影像数据的读取.计算,并基于质量控制QC波段进行图像掩膜的方法. 前期的文章Python GDAL读取栅格数据并基于质量评估波段QA对 ...
- Python爬虫教程-18-页面解析和数据提取
本篇针对的数据是已经存在在页面上的数据,不包括动态生成的数据,今天是对HTML中提取对我们有用的数据,去除无用的数据 Python爬虫教程-18-页面解析和数据提取 结构化数据:先有的结构,再谈数据 ...
- Python核对遥感影像批量下载情况的方法
本文介绍批量下载遥感影像时,利用Python实现已下载影像文件的核对,并自动生成未下载影像的下载链接列表的方法. 批量下载大量遥感影像数据对于GIS学生与从业人员可谓十分常见.然而,对于动辄成 ...
- Python ArcPy批量掩膜、重采样大量遥感影像
本文介绍基于Python中ArcPy模块,对大量栅格遥感影像文件进行批量掩膜与批量重采样的操作. 首先,我们来明确一下本文的具体需求.现有一个存储有大量.tif格式遥感影像的文件夹:且其中除了 ...
- 基于GDAL的遥感影像显示(C#版)
基于GDAL的遥感影像显示(C#版) - 菜菜的专栏 - 博客频道 - CSDN.NET http://blog.csdn.net/RSyaoxin/article/details/9220735
- 基于VC++ Win32+CUDA+OpenGL组合与VC++ MFC SDI+CUDA+OpenGL组合两种方案的遥感影像显示:获得的重要结论!
1.基于VC++ Win32+CUDA+OpenGL组合的遥感影像显示 在该组合方案下,初始化时将OpenGL设置为下面两种方式,效果一样 //设置方式1 glutInitDisplayMode (G ...
- Go/Python/Erlang编程语言对比分析及示例 基于RabbitMQ.Client组件实现RabbitMQ可复用的 ConnectionPool(连接池) 封装一个基于NLog+NLog.Mongo的日志记录工具类LogUtil 分享基于MemoryCache(内存缓存)的缓存工具类,C# B/S 、C/S项目均可以使用!
Go/Python/Erlang编程语言对比分析及示例 本文主要是介绍Go,从语言对比分析的角度切入.之所以选择与Python.Erlang对比,是因为做为高级语言,它们语言特性上有较大的相似性, ...
- 深度学习遥感影像(哨兵2A/B)超分辨率
这段时间,用到了哨兵影像,遇到了一个问题,就是哨兵影像,它的RGB/NIR波段是10米分辨率的,但是其他波段是20米和60米的,这就需要pansharpening了,所以我们需要设计一种算法来进行解决 ...
- 遥感影像和DEM数据获取处理、GeoServer切片发布并使用Cesium加载
1. 数据获取 笔者这里使用的是哨兵一号(Sentinel-1).ALOS的遥感影像和ALOS的DEM数据 下载地址为:ASF Data Search (alaska.edu) ASF(Alaska ...
随机推荐
- [GPT] golang 有那么多系统包 该如何了解和学习
在学习和了解Golang(Go语言)的系统包时,可以遵循以下步骤来逐步熟悉并掌握它们: 1. 官方文档阅读: 首先从官方文档入手,Go的标准库文档非常详尽且易于理解.你可以访问 Go标准库 来查看各个 ...
- UOS 开启 VisualStudio 远程调试 .NET 应用之旅
本文记录的是在 Windows 系统里面,使用 VisualStudio 2022 远程调试运行在 UOS 里面 dotnet 应用的配置方法 本文写于 2024.03.19 如果你阅读本文的时间距离 ...
- dotnet 读 WPF 源代码笔记 简单聊聊文本布局换行逻辑
在 WPF 里面,带了基础的文本库功能,如 TextBlock 等.文本库排版的重点是在文本的分行逻辑,也就是换行逻辑,如何计算当前的文本字符串到达哪个字符就需要换到下一行的逻辑就是文本布局的重点模块 ...
- 后端每日一题 2:DNS 解析过程
本文首发于公众号:腐烂的橘子 本文梗概: DNS 是什么,有什么作用 一条 DNS 记录是什么样的 DNS 域名解析原理 DNS 服务器如何抵御攻击 DNS 是什么,有什么作用 DNS(Domain ...
- WPF-dataGrid动态更新
简介: 问题:在WPF中,使用了ObservableCollection<T>作为dataGrid的数据源,发现更新数据的时候不会触发dataGrid的更新 By MaQaQ 2023-1 ...
- chgrp chown
chgrp 用来改变文件所属群组,如果要改变的群组不在/etc/group里面,将会报错. chown 用来改变文件的所有者,如果改变的所有者便在/etc/passwd里面,将会报错. 需要注意的是c ...
- 数据结构单向链表——找到并输出倒数第k个结点的数据
/********************************************************************************************** * fu ...
- RESTful风格openapi接口设计+openapi远程服务调用
我们平常开发一般只使用GET.POST方法.而对于HTTP给出的PUT.DELETE等其他方法都没使用.以RESTful风格设计接口就能全部用上这些方法. 按照RESTful理查德森成熟度模型改造接口 ...
- Hibernate双向关联导致Java对象转换为JSON字符串时死循环问题的分析与解决方案
引言: 本文描述了在SSH框架中,多个持久层对象相互引用,从而引发分页查询中,查询所得的持久化对象转换为JSON字符串报错的原因及解决方案 使用EasyUI框架的小伙伴们都知道,在使用datagrid ...
- 解读注意力机制原理,教你使用Python实现深度学习模型
本文分享自华为云社区<使用Python实现深度学习模型:注意力机制(Attention)>,作者:Echo_Wish. 在深度学习的世界里,注意力机制(Attention Mechanis ...