微分流形Loring W. Tu section19 19.12 解答
微分流形Loring W. Tu section19 19.12 解答,当然咯我自己也不知道是否严谨正确,反正就是自己的思考与想法,简单一写,欢迎友好讨论.
19.12 对于任意的\(f \in C^{\infty}(M)\), \(\forall p \in M\), 定义映射
\varphi: \mathfrak{X}(M) &\to Der(C^{\infty}(M))\\
X &\mapsto X_{p}f
\end{aligned}\]
证明:\(\varphi\)是一个同构映射.
\(Proof.\) 线性和单射是非常容易验证的.下面我们讨论满射,
先考虑流形\(M\)上任意一个开集\(U\), 设\(D \in Der(C^{\infty}(M))\), 由$Taylor $定理,
\]
其中,\(g_{i}(p)=\dfrac{\partial f }{\partial x^{i}} (p)\).
\]
\]
\(X_{p}=\sum_{i}D(x^{i})\dfrac{\partial }{\partial x^{i}} |p \in \mathfrak{X}(M)\).
下面考虑在流形\(M\)上, 取一个图册\(\{(V_{i}, \varphi_{i}) \}\), 且\(V_{i} \subset U_{i}\), \(\theta_{i}\)为对应的单位分解. \(\forall i\), \(\theta_{i}D :f \to \theta_{i}Df \in Der(C^{\infty}(M))\). 这样定义了一个唯一的导子\(D_{i}\in C^{\infty}(U_{i})\),使得\(D_{i}(f|U_{i})=(\theta_{i}Df)|_{U_{i}}\).
\(\forall i\), 由上面的讨论可以知道\(D_{i}\)有原像\(X_{i}\in \mathfrak{X}(M)\), 而\(X_{i}\)在\(supp \theta_{i}\)之外为\(0\),取\(X=\sum X_{i}\),
\]
故对于任意的\(D \in Der(C^{\infty}(M))\), 存在原像\(X=\sum X_{i}\). 故$\varphi $为满射.
这就完成了证明.
微分流形Loring W. Tu section19 19.12 解答的更多相关文章
- 2016年10月27日 星期四 --出埃及记 Exodus 19:12
2016年10月27日 星期四 --出埃及记 Exodus 19:12 Put limits for the people around the mountain and tell them, `Be ...
- HDU1879 继续畅通工程 2017-04-12 19:12 50人阅读 评论(0) 收藏
继续畅通工程 Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submis ...
- WPF DispatcherTimer一些个人看法 (原发布 csdn 2017-04-25 19:12:22)
wpf中的DispatcherTimer基本用法,本文不在叙述.主要写一些不同的,来提醒自己不要再犯同样错误. 前几天写代码时发现.当在非UI线程创建DispatcherTimer实例时,程序无法进入 ...
- 【分享】《美国数学本科生,研究生基础课程参考书目(个人整理)》[DJVU][VERYCD]
目录: 第一学年 几何与拓扑: 1.James R. Munkres, Topology:较新的拓扑学的教材适用于本科高年级或研究生一年级: 2.Basic Topology by Armstrong ...
- 【集群实战】inotify
1. inotify简介 Inotify是一种强大的,细粒度的,异步的文件系统事件监控机制(软件). linux内核从2.6.13起,加入了Inotify支持,通过Inotify可以监控文件系统中添加 ...
- c#用正则表达式判断字符串是否全是数字、小数点、正负号组成 Regex reg = new Regex(@"^(([0-9]+\.[0-9]*[1-9][0-9]*)|([0-9]*[1-9][0-9]*\.[0-9]+)|([0-9]*[1-9][0-9]*))$");
Regex reg = new Regex(@"^(([0-9]+\.[0-9]*[1-9][0-9]*)|([0-9]*[1-9][0-9]*\.[0-9]+)|([0-9]*[1-9][ ...
- w、who、last、lastbon、lastlog显示登录命令用法
一.w 显示已登录用户信息和用户正在执行命令 1.命令功能 w可以显示已登录系统的用户,并显示用户正在执行的命令 2.语法格式 w option user 选项说明 选项 选项说明 -h 不显示前两行 ...
- Linux就这个范儿 第19章 团结就是力量 LSB是Linux标准化基地(Linux Standards Base)的简称
Linux就这个范儿 第19章 团结就是力量 LSB是Linux标准化基地(Linux Standards Base)的简称 这个图片好可爱,它是LSB组织的图标.你肯定会问:“图标这么设计一定有说 ...
- JavaSE_ IO流 总目录(19~22)
JavaSE学习总结第19天_IO流119.01 集合的特点和数据结构总结19.02 如何选择使用哪种集合19.03 集合常见功能和遍历方式总结19.04 异常的概述和分类19.05 JVM默认处理异 ...
- JavaSE学习总结第19天_IO流1
19.01 集合的特点和数据结构总结 HashSet.HashMap.Hashtable判断元素唯一性的方式: 通过对象的hashCode和equals方法来完成元素唯一性 如果对象的hashC ...
随机推荐
- 浅析JS原型链
目录 实例对象 原型对象 对象原型 短暂总结一下 constructor 原型链 何为原型链呢? 就是实例对象和原型对象之间的链接,每一个对象都有原型,原型本身又是对象,原型又有原型,以此类推形成一个 ...
- DynamicHead:基于像素级路由机制的动态FPN | NIPS 2020
论文提出了细粒度动态detection head,能够基于路由机制动态地融合不同FPN层的像素级局部特征进行更好的特征表达.从设计的路由空间来看是一个十分耗时的操作,但是作者设计的高效路由器实际计算十 ...
- KingbaseES V8R6 中walminer的使用
前言 walminer工具可以帮助dba挖掘wal日志中的内容,看到某时间对应数据库中的具体操作.例如挖掘日志后可以看到数据库某时间有哪些dml语句. walminer的限制与约束 WalMiner工 ...
- Games101-作业5
说明 本次作业主要实现Whitted-光线追踪,作业框架只需要我们编写两个部分,一个是求解观测光线--从摄像机到每个像素的向量:第二个是判断射线与三角形的交点. 求解观测光线 需要对每个像素求解在实际 ...
- 简单的Git/GitHub
什么是Git/GitHub Git 是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. 版本控制(Revision control)是一种在开发的过程中用于管理我们对文件.目录或工 ...
- 关于 ThreadLocalRandom 随机数生成器
ThreadLocalRandom 线程安全随机数获取. 示例随机整数:java.util.concurrent.ThreadLocalRandom.current().nextInt(); 线程Th ...
- OpenHarmony开源开发者成长计划 | 知识赋能第六期预告—从零上手OpenHarmony智能家居项目
OpenAtom OpenHarmony(以下简称"OpenHarmony")开源开发者成长计划项目自 2021 年 10 月 24 日上线以来,在开发者中引发高度关注. 成长计划 ...
- Windows Server 2008 R2修复永恒之蓝漏洞
一.情况描述 服务器安装的Windows Server 2008 R2 standard系统,通过扫描发现系统存在永恒之蓝漏洞MS17-010(CVE-2017-0143.CVE-2017-0144. ...
- 重新整理.net core 计1400篇[六] (.net core 一个简易版的依赖注入容器 )
前言 我们了解到一个依赖注入的形式是: 注入依赖服务:var root = new Cat().Register<IFoo, Foo>(Lifetime.Transient); 获取对应的 ...
- Flask、Tornado、Nginx搭建Https服务
其实Flask可以直接用tornado部署就行: # coding=utf-8 from tornado.wsgi import WSGIContainer from tornado.httpserv ...