Building the Unstructured Data Warehouse: Architecture, Analysis, and Design
Building the Unstructured Data Warehouse: Architecture, Analysis, and Design
earn essential techniques from data warehouse legend Bill Inmon on how to build the reporting environment your business needs now!
Answers for many valuable business questions hide in text. How well can your existing reporting environment extract the necessary text from email, spreadsheets, and documents, and put it in a useful format for analytics and reporting? Transforming the traditional data warehouse into an efficient unstructured data warehouse requires additional skills from the analyst, architect, designer, and developer. This book will prepare you to successfully implement an unstructured data warehouse and, through clear explanations, examples, and case studies, you will learn new techniques and tips to successfully obtain and analyze text.
Master these ten objectives:
- Build an unstructured data warehouse using the 11-step approach
- Integrate text and describe it in terms of homogeneity, relevance, medium, volume, and structure
- Overcome challenges including blather, the Tower of Babel, and lack of natural relationships
- Avoid the Data Junkyard and combat the Spider's Web
- Reuse techniques perfected in the traditional data warehouse and Data Warehouse 2.0, including iterative development
- Apply essential techniques for textual Extract, Transform, and Load (ETL) such as phrase recognition, stop word filtering, and synonym replacement
- Design the Document Inventory system and link unstructured text to structured data
- Leverage indexes for efficient text analysis and taxonomies for useful external categorization
- Manage large volumes of data using advanced techniques such as backward pointers
- Evaluate technology choices suitable for unstructured data processing, such as data warehouse appliances
The following outline briefly describes each chapter's content:
- Chapter 1 defines unstructured data and explains why text is the main focus of this book.
- Chapter 2 addresses the challenges one faces when managing unstructured data.
- Chapter 3 discusses the DW 2.0 architecture, which leads into the role of the unstructured data warehouse. The unstructured data warehouse is defined and benefits are given. There are several features of the conventional data warehouse that can be leveraged for the unstructured data warehouse, including ETL processing, textual integration, and iterative development.
- Chapter 4 focuses on the heart of the unstructured data warehouse: Textual Extract, Transform, and Load (ETL).
- Chapter 5 describes the 11 steps required to develop the unstructured data warehouse.
- Chapter 6 describes how to inventory documents for maximum analysis value, as well as link the unstructured text to structured data for even greater value.
- Chapter 7 goes through each of the different types of indexes necessary to make text analysis efficient. Indexes range from simple indexes, which are fast to create and are good if the analyst really knows what needs to be analyzed before the indexing process begins, to complex combined indexes, which can be made up of any and all of the other kinds of indexes.
- Chapter 8 explains taxonomies and how they can be used within the unstructured data warehouse.
- Chapter 9 explains ways of coping with large amounts of unstructured data. Techniques such as keeping the unstructured data at its source and using backward pointers are discussed. The chapter explains why iterative development is so important.
- Chapter 10 focuses on challenges and some technology choices that are suitable for unstructured data processing. In addition, the data warehouse appliance is discussed.
- Chapters 11, 12, and 13 put all of the previously discussed techniques and approaches in context through three case studies.
Building the Unstructured Data Warehouse: Architecture, Analysis, and Design的更多相关文章
- 对数据集“dsArea”执行查询失败。 (rsErrorExecutingCommand),Query execution failed for dataset 'dsArea'. (rsErrorExecutingCommand),Manually process the TFS data warehouse and analysis services cube
错误提示: 处理报表时出错. (rsProcessingAborted)对数据集“dsArea”执行查询失败. (rsErrorExecutingCommand)Team System 多维数据集或者 ...
- Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 1
转自: http://www.confluent.io/blog/stream-data-platform-1/ These days you hear a lot about "strea ...
- DataBase vs Data Warehouse
Database https://en.wikipedia.org/wiki/Database A database is an organized collection of data.[1] A ...
- data warehouse 1.0 vs 2.0
data warehouse 1.01. EDW goal, separate data marts reqlity2. batch oriented etl3. IT driven BI - das ...
- Azure SQL 数据库仓库Data Warehouse (1) 入门
<Windows Azure Platform 系列文章目录> 在之前的项目中遇到了客户使用SQL数据仓库的场景,在这里记录一下 1.什么是SQL 数据库仓库 (SQL DW) SQL D ...
- Data Warehouse 简介
数据仓库定义 数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受:数据仓库(Data Warehouse)是一个面 ...
- 混合 Data Warehouse 和 Big Data 倉庫的新架構
(讀書筆記)許多公司,儘管想導入 Big Data,仍必須繼續用 Data Warehouse 來管理結構化的營運數據.系統記錄.而 Big Data 的出現,為 Data Warehouse 提供了 ...
- Azure SQL Data Warehouse
Azure SQL Data Warehouse & AWS Redshift Amazon Redshift Amazon Redshift 是一种快速.完全托管的 PB 级数据仓库,可方便 ...
- 场景4 Data Warehouse Management 数据仓库
场景4 Data Warehouse Management 数据仓库 parallel 4 100% —> 必须获得指定的4个并行度,如果获得的进程个数小于设置的并行度个数,则操作失败 para ...
随机推荐
- windows apache "The requested operation has failed" 启动失败
找到失败原因,进入cmd(win+r快捷键,输入cmd)命令行下 进入到你的apache bin目录下: 每个人错误可能不同,根据自己问题去相应改
- 08 正则表达式,Math类,Random,System类,BigInteger,BigDecimal,Date,DateFormat,Calendar
正则表达式: 是指一个用来描述或者匹配一系列符合某个语法规则的字符串的单个字符串.其实就是一种规则.有自己特殊的应用. public class Demo2_Regex { public sta ...
- acm 2072
////////////////////////////////////////////////////////////////////////////////#include<iostream ...
- (16)模型层Models - ORM的使用
需求:通过orm创建user表 先配置settings文件夹 连接数据库和配置数据库 Django的模块有两种 1.mysqlDB django内置的模块,只能在python2.X版本下用 2.py ...
- 《DSP using MATLAB》Problem 5.37
证明过程: 代码: %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- java super的用法
通过用static来定义方法或成员,从某种程度上可以说它类似于C语言中的全局函数和全局变量. this&super这两个关键字的意义和用法. 在Java中,this通常指当前对象,super则 ...
- Node学习笔记:建立TCP服务器和客户端之间的通信
结构: socket是应用层和传输层的桥梁.(传输层之上的协议所涉及的数据都是在本机处理的,并没进入网络中) 涉及数据: socket所涉及的数据是报文,是明文. 作用: 建立长久链接,供网络上的两个 ...
- set集合的遍历(基于迭代器和增强for循环,没有一般的for循环)
赋:开发项目中见到的代码 Java中Set集合是一个不包含重复元素的Collection,首先我们先看看遍历方法 package com.sort; import java.util.HashSet; ...
- python基础(八)——多线程
[root@bogon python]# cat test.py #!/usr/bin/ptyhon import thread import time def print_time(threadNa ...
- mysqldump命令之常用模板
##=====================================================## ## 在Master上导出所有数据库 /export/servers/mysql/b ...