Building the Unstructured Data Warehouse: Architecture, Analysis, and Design

earn essential techniques from data warehouse legend Bill Inmon on how to build the reporting environment your business needs now!

Answers for many valuable business questions hide in text. How well can your existing reporting environment extract the necessary text from email, spreadsheets, and documents, and put it in a useful format for analytics and reporting? Transforming the traditional data warehouse into an efficient unstructured data warehouse requires additional skills from the analyst, architect, designer, and developer. This book will prepare you to successfully implement an unstructured data warehouse and, through clear explanations, examples, and case studies, you will learn new techniques and tips to successfully obtain and analyze text.

Master these ten objectives:

  • Build an unstructured data warehouse using the 11-step approach
  • Integrate text and describe it in terms of homogeneity, relevance, medium, volume, and structure
  • Overcome challenges including blather, the Tower of Babel, and lack of natural relationships
  • Avoid the Data Junkyard and combat the Spider's Web
  • Reuse techniques perfected in the traditional data warehouse and Data Warehouse 2.0, including iterative development
  • Apply essential techniques for textual Extract, Transform, and Load (ETL) such as phrase recognition, stop word filtering, and synonym replacement
  • Design the Document Inventory system and link unstructured text to structured data
  • Leverage indexes for efficient text analysis and taxonomies for useful external categorization
  • Manage large volumes of data using advanced techniques such as backward pointers
  • Evaluate technology choices suitable for unstructured data processing, such as data warehouse appliances

The following outline briefly describes each chapter's content:

  • Chapter 1 defines unstructured data and explains why text is the main focus of this book.
  • Chapter 2 addresses the challenges one faces when managing unstructured data.
  • Chapter 3 discusses the DW 2.0 architecture, which leads into the role of the unstructured data warehouse. The unstructured data warehouse is defined and benefits are given. There are several features of the conventional data warehouse that can be leveraged for the unstructured data warehouse, including ETL processing, textual integration, and iterative development.
  • Chapter 4 focuses on the heart of the unstructured data warehouse: Textual Extract, Transform, and Load (ETL).
  • Chapter 5 describes the 11 steps required to develop the unstructured data warehouse.
  • Chapter 6 describes how to inventory documents for maximum analysis value, as well as link the unstructured text to structured data for even greater value.
  • Chapter 7 goes through each of the different types of indexes necessary to make text analysis efficient. Indexes range from simple indexes, which are fast to create and are good if the analyst really knows what needs to be analyzed before the indexing process begins, to complex combined indexes, which can be made up of any and all of the other kinds of indexes.
  • Chapter 8 explains taxonomies and how they can be used within the unstructured data warehouse.
  • Chapter 9 explains ways of coping with large amounts of unstructured data. Techniques such as keeping the unstructured data at its source and using backward pointers are discussed. The chapter explains why iterative development is so important.
  • Chapter 10 focuses on challenges and some technology choices that are suitable for unstructured data processing. In addition, the data warehouse appliance is discussed.
  • Chapters 11, 12, and 13 put all of the previously discussed techniques and approaches in context through three case studies.

Building the Unstructured Data Warehouse: Architecture, Analysis, and Design的更多相关文章

  1. 对数据集“dsArea”执行查询失败。 (rsErrorExecutingCommand),Query execution failed for dataset 'dsArea'. (rsErrorExecutingCommand),Manually process the TFS data warehouse and analysis services cube

    错误提示: 处理报表时出错. (rsProcessingAborted)对数据集“dsArea”执行查询失败. (rsErrorExecutingCommand)Team System 多维数据集或者 ...

  2. Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 1

    转自: http://www.confluent.io/blog/stream-data-platform-1/ These days you hear a lot about "strea ...

  3. DataBase vs Data Warehouse

    Database https://en.wikipedia.org/wiki/Database A database is an organized collection of data.[1] A ...

  4. data warehouse 1.0 vs 2.0

    data warehouse 1.01. EDW goal, separate data marts reqlity2. batch oriented etl3. IT driven BI - das ...

  5. Azure SQL 数据库仓库Data Warehouse (1) 入门

    <Windows Azure Platform 系列文章目录> 在之前的项目中遇到了客户使用SQL数据仓库的场景,在这里记录一下 1.什么是SQL 数据库仓库 (SQL DW) SQL D ...

  6. Data Warehouse 简介

    数据仓库定义 数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受:数据仓库(Data Warehouse)是一个面 ...

  7. 混合 Data Warehouse 和 Big Data 倉庫的新架構

    (讀書筆記)許多公司,儘管想導入 Big Data,仍必須繼續用 Data Warehouse 來管理結構化的營運數據.系統記錄.而 Big Data 的出現,為 Data Warehouse 提供了 ...

  8. Azure SQL Data Warehouse

    Azure SQL Data Warehouse & AWS Redshift Amazon Redshift Amazon Redshift 是一种快速.完全托管的 PB 级数据仓库,可方便 ...

  9. 场景4 Data Warehouse Management 数据仓库

    场景4 Data Warehouse Management 数据仓库 parallel 4 100% —> 必须获得指定的4个并行度,如果获得的进程个数小于设置的并行度个数,则操作失败 para ...

随机推荐

  1. MySQL中的运算符和时间运算

    一.MySQL中运算符的分类 算术运算符,比较运算符,逻辑运算符,按位运算符 二.算数运算符 符号                            作用 + 加法   - 减法   * 乘法   ...

  2. 检测IP地址冲突的shell脚本-check_server_ip_conflict.sh

    check_server_ip_conflict.sh 使用arping获取对应IP地址的MAC地址,如果和预料的不一致则报警: #!/bin/bash epg_addr_01="00:50 ...

  3. Angular 手动解析表达式

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. Nginx环境搭建准备

    前提: 1.确认系统网络 2.确认yum可用 3.确认关闭iptables规则 4.确认停用selinux 1.cd /opt mkdir app download logs work backup ...

  5. 11月15Sprint计划会议及内容·

    今天对整体设计做了明确的规划 工作分配: 1规划 2规则制定 3窗体设计 4模型设计 5代码编写 6美化 7产品交付 8后期宣传 王超群前四项 吕浩宇后四项

  6. iostat iotop 查看硬盘的读写、 free 查看内存的命令 、netstat 命令查看网络、tcpdump 命令

    iostat 命令 查看硬盘的使用情况: iostat iostat -x iotop 命令: 若没安装先安装: yum install iotop -y free 命令,用于查看内存的使用量: fr ...

  7. 2017.4.7 Sprng MVC工作流程描述图

    图一: 图二: Spring工作流程描述         1. 用户向服务器发送请求,请求被Spring 前端控制Servelt DispatcherServlet捕获:       2. Dispa ...

  8. hdu3974 Assign the task dfs序+线段树

    There is a company that has N employees(numbered from 1 to N),every employee in the company has a im ...

  9. css中的margin(外边框)、border(边框)、padding(填充)的区别

    Margin(外边距) - 清除边框外的区域,外边距是透明的. Border(边框) - 围绕在内边距和内容外的边框. Padding(内边距) - 清除内容周围的区域,内边距是透明的. Conten ...

  10. Js判断字符的种类

    Js判断字符的种类:unicode范围: 48-57:0-9    数字字符 65-90:A-Z    大写字母 97-122: a-z  小写字母 19968-40869:汉字 其他字符 实例:输出 ...