Building the Unstructured Data Warehouse: Architecture, Analysis, and Design
Building the Unstructured Data Warehouse: Architecture, Analysis, and Design
earn essential techniques from data warehouse legend Bill Inmon on how to build the reporting environment your business needs now!
Answers for many valuable business questions hide in text. How well can your existing reporting environment extract the necessary text from email, spreadsheets, and documents, and put it in a useful format for analytics and reporting? Transforming the traditional data warehouse into an efficient unstructured data warehouse requires additional skills from the analyst, architect, designer, and developer. This book will prepare you to successfully implement an unstructured data warehouse and, through clear explanations, examples, and case studies, you will learn new techniques and tips to successfully obtain and analyze text.
Master these ten objectives:
- Build an unstructured data warehouse using the 11-step approach
- Integrate text and describe it in terms of homogeneity, relevance, medium, volume, and structure
- Overcome challenges including blather, the Tower of Babel, and lack of natural relationships
- Avoid the Data Junkyard and combat the Spider's Web
- Reuse techniques perfected in the traditional data warehouse and Data Warehouse 2.0, including iterative development
- Apply essential techniques for textual Extract, Transform, and Load (ETL) such as phrase recognition, stop word filtering, and synonym replacement
- Design the Document Inventory system and link unstructured text to structured data
- Leverage indexes for efficient text analysis and taxonomies for useful external categorization
- Manage large volumes of data using advanced techniques such as backward pointers
- Evaluate technology choices suitable for unstructured data processing, such as data warehouse appliances
The following outline briefly describes each chapter's content:
- Chapter 1 defines unstructured data and explains why text is the main focus of this book.
- Chapter 2 addresses the challenges one faces when managing unstructured data.
- Chapter 3 discusses the DW 2.0 architecture, which leads into the role of the unstructured data warehouse. The unstructured data warehouse is defined and benefits are given. There are several features of the conventional data warehouse that can be leveraged for the unstructured data warehouse, including ETL processing, textual integration, and iterative development.
- Chapter 4 focuses on the heart of the unstructured data warehouse: Textual Extract, Transform, and Load (ETL).
- Chapter 5 describes the 11 steps required to develop the unstructured data warehouse.
- Chapter 6 describes how to inventory documents for maximum analysis value, as well as link the unstructured text to structured data for even greater value.
- Chapter 7 goes through each of the different types of indexes necessary to make text analysis efficient. Indexes range from simple indexes, which are fast to create and are good if the analyst really knows what needs to be analyzed before the indexing process begins, to complex combined indexes, which can be made up of any and all of the other kinds of indexes.
- Chapter 8 explains taxonomies and how they can be used within the unstructured data warehouse.
- Chapter 9 explains ways of coping with large amounts of unstructured data. Techniques such as keeping the unstructured data at its source and using backward pointers are discussed. The chapter explains why iterative development is so important.
- Chapter 10 focuses on challenges and some technology choices that are suitable for unstructured data processing. In addition, the data warehouse appliance is discussed.
- Chapters 11, 12, and 13 put all of the previously discussed techniques and approaches in context through three case studies.
Building the Unstructured Data Warehouse: Architecture, Analysis, and Design的更多相关文章
- 对数据集“dsArea”执行查询失败。 (rsErrorExecutingCommand),Query execution failed for dataset 'dsArea'. (rsErrorExecutingCommand),Manually process the TFS data warehouse and analysis services cube
错误提示: 处理报表时出错. (rsProcessingAborted)对数据集“dsArea”执行查询失败. (rsErrorExecutingCommand)Team System 多维数据集或者 ...
- Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 1
转自: http://www.confluent.io/blog/stream-data-platform-1/ These days you hear a lot about "strea ...
- DataBase vs Data Warehouse
Database https://en.wikipedia.org/wiki/Database A database is an organized collection of data.[1] A ...
- data warehouse 1.0 vs 2.0
data warehouse 1.01. EDW goal, separate data marts reqlity2. batch oriented etl3. IT driven BI - das ...
- Azure SQL 数据库仓库Data Warehouse (1) 入门
<Windows Azure Platform 系列文章目录> 在之前的项目中遇到了客户使用SQL数据仓库的场景,在这里记录一下 1.什么是SQL 数据库仓库 (SQL DW) SQL D ...
- Data Warehouse 简介
数据仓库定义 数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受:数据仓库(Data Warehouse)是一个面 ...
- 混合 Data Warehouse 和 Big Data 倉庫的新架構
(讀書筆記)許多公司,儘管想導入 Big Data,仍必須繼續用 Data Warehouse 來管理結構化的營運數據.系統記錄.而 Big Data 的出現,為 Data Warehouse 提供了 ...
- Azure SQL Data Warehouse
Azure SQL Data Warehouse & AWS Redshift Amazon Redshift Amazon Redshift 是一种快速.完全托管的 PB 级数据仓库,可方便 ...
- 场景4 Data Warehouse Management 数据仓库
场景4 Data Warehouse Management 数据仓库 parallel 4 100% —> 必须获得指定的4个并行度,如果获得的进程个数小于设置的并行度个数,则操作失败 para ...
随机推荐
- 【c++基础】static修饰的函数作用与意义
static修饰的函数作用与意义 static修饰的函数叫做静态函数,静态函数有两种,根据其出现的地方来分类: 如果这个静态函数出现在类里,那么它是一个静态成员函数: 静态成员函数的作用在于:调用这个 ...
- CodeMirror tab转空格
解决CodeMirror编辑器Tab转空格问题 editor.setOption("extraKeys", { Tab: newTab }); function newTab(cm ...
- 如何运行简单的scrapy
1.建scrapy工程 scrapy startproject python123demo 2.在工程中写一个爬虫文件 cd python123demo scrapy genspider demo p ...
- JPI中常使用的类介绍:
Math类: java.lang包下的 final,不可被继承, 其中的方法和属性都是静态的 其构造方法私有化了,其他类不可以使用构造方法. 向上取整:Math.ceil(double d); 向下取 ...
- nginx配置基于域名的虚拟主机
其实基于域名和基于ip的虚拟主机配置是差不多的,在配置基于ip的虚拟主机上我们只需要修改几个地方就能变成基于域名的虚拟主机,一个是要修改域名,一个是host文件直接看代码 [root@localhos ...
- python简单实现目录对比
[root@localhost python]# cat dircmptest.py #!/usr/bin/python import filecmp path1="/root/python ...
- linux面试题(自己添加了一些注释说明)
1.linux如何挂在windows下的共享目录 首先需要在Windows中创建一个文件夹用来共享,例如下面就是server是用来共享的,貌似在哪个位置创建都可以,我是在d盘创建的 1 mount.c ...
- 用flask和长轮询实现对帅哥投票和实时查看票数
flask中的代码 from flask import Flask,request,render_template,redirect,session,jsonify import uuid impor ...
- Unity3d插件开发与SDK对接实战 学习
c++: 注意x86/x64,vs2015. #include "stdafx.h" extern "C" { int Add(int a, int b) { ...
- 最新apache多域名多站点配置
httpd.conf===> Listen Listen ServerName 用IP地址作为servername LoadModule rewrite_module modules/mod_r ...