大意:构造n结点树, 高度$i$的结点有$a_i$个, 且叶子有k个.

先确定主链, 然后贪心放其余节点.

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
//head const int N = 1e6+10;
int n, tot, k, t;
int a[N], fa[N];
vector<int> g[N]; int main() {
scanf("%d%d%d", &n, &t, &k);
REP(i,1,t) scanf("%d", a+i);
a[0] = 1;
REP(i,0,t) REP(j,1,a[i]) g[i].pb(++tot);
for (int x:g[1]) fa[x]=1;
REP(i,2,t) fa[g[i][0]]=g[i-1][0];
int res = n-k-t;
if (res<0) return puts("-1"),0;
REP(i,2,t) {
REP(j,1,a[i]-1) {
if (res&&j<=a[i-1]-1) {
fa[g[i][j]] = g[i-1][j], --res;
}
else fa[g[i][j]] = g[i-1][0];
}
}
if (res) return puts("-1"),0;
printf("%d\n", n);
REP(i,2,n) printf("%d %d\n", i,fa[i]);hr;
}

New Roads CodeForces - 746G (树,构造)的更多相关文章

  1. Subordinates CodeForces - 737C (树,构造)

    大意: 求构造一棵树, 每个节点回答它的祖先个数, 求最少打错次数. 挺简单的一个构造, 祖先个数等价于节点深度, 所以只需要确定一个最大深度然后贪心即可. 需要特判一下根的深度, 再特判一下只有一个 ...

  2. Codeforces 959 树构造 暴力求最小字典序互质序列

    A B C 题目给你一个结论 最少需要min((odd,even)个结点可以把一棵树的全部边连起来 要求你输出两颗树 一棵树结论是正确的 另外一棵结论是正确的 正确结论的树很好造 主要是错误的树 题目 ...

  3. codeforces 1041 e 构造

    Codeforces 1041 E 构造题. 给出一种操作,对于一棵树,去掉它的一条边.那么这颗树被分成两个部分,两个部分的分别的最大值就是这次操作的答案. 现在给出一棵树所有操作的结果,问能不能构造 ...

  4. Fools and Roads CodeForces - 191C

    Fools and Roads CodeForces - 191C 题意:给出一棵n个节点的树,还有树上的k条简单路径(用路径的两个端点u和v表示),对于树上每一条边,求出其被多少条简单路径经过. 方 ...

  5. C#在泛型类中,通过表达式树构造lambda表达式

    场景 最近对爬虫的数据库架构做调整,需要将数据迁移到MongoDB上去,需要重新实现一个针对MongoDB的Dao泛型类,好吧,动手开工,当实现删除操作的时候问题来了. 我们的删除操作定义如下:voi ...

  6. lintcode :前序遍历和中序遍历树构造二叉树

    解题 前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树: 2 / \ 1 3 注意 你可以假设树中不存 ...

  7. lintcode: 中序遍历和后序遍历树构造二叉树

    题目 中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: 2 /  \ 1    3 注意 你可 ...

  8. LintCode-72.中序遍历和后序遍历树构造二叉树

    中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 注意事项 你可以假设树中不存在相同数值的节点 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: ...

  9. LintCode-73.前序遍历和中序遍历树构造二叉树

    前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 注意事项 你可以假设树中不存在相同数值的节点 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树:    ...

随机推荐

  1. [POI2011]Garbage 欧拉回路

    [POI2011]Garbage 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2278 https://loj.ac/problem/216 ...

  2. P3041 [USACO12JAN]视频游戏的连击Video Game Combos

    思路 简单的AC自动机上dp,暴力跳fail向子节点直接转移即可 代码 #include <cstdio> #include <algorithm> #include < ...

  3. Linux命令2——b

    badblocks:检查磁盘设备中损坏的区块 -b:指定磁盘的区块大小,单位:字节 -c:一次检查几个区块 -i:由文件总读取已知的损坏区块,检查时会忽略这些区块 -o:检查的结果写入指定的输出文件. ...

  4. Python 一个抓取糗百的段子的小程序

    import requests import re #糗事百科爬虫类 class QSBK: #初始化方法,定义一些变量 def __init__(self): self.headers={ &quo ...

  5. 清除memcached缓存

    telnet localhost 11211 flush_all 最后要一定要关闭dos窗体,不然会导致memcached写值返回ture,但是实际上并没有写入值

  6. gulp的使用介绍及技巧

    gulp的使用介绍及技巧 转载: https://www.cnblogs.com/2050/p/4198792.html 1.gulp的安装 首先确保你已经正确安装了nodejs环境.然后以全局方式安 ...

  7. R语言通过loess去除某个变量对数据的影响--CNV分析

    当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化 ...

  8. 用html+css+js实现选项卡切换效果

    文章转载自:http://tongling.github.io/JSCards/ 用html+css+js实现选项卡切换效果 使用之前学过的综合知识,实现一个新闻门户网站上的常见选项卡效果: 文字素材 ...

  9. centos7安装tomcat8 新手入门 图文教程

    系统环境 操作系统:64位CentOS Linux release 7.2.1511 (Core) JDK版本:1.8.0_121 下载tomcat8压缩包 访问官网:http://tomcat.ap ...

  10. 微信小程序 数据绑定方式

    与vue不同,在微信小程序中,js的数据和前端显示的数据是单数据流,也就是说,js里边的数据变了(通过setData),前端能立刻显示.但如果前端数据变了,js中的变量不能改变. 这个相比传统的前端已 ...