对于分类预测模型的表现评估我们最常见的指标就是ROC曲线,报告AUC。比如有两个模型,我们去比较下两个模型AUC的大小,进而得出两个模型表现的优劣。这个是我们常规的做法,如果我们的研究关注点放在“在原模型新引入一个预测变量,模型的效果会不会提高时”,这个时候ROC就常常会显得力不从心,因为通常加入一个变量AUC不会有太大的变化,且AUC不好解释。

When evaluating the improvement of predictive performance of a predictive model after incorporating a new marker, the improvement of C-Statistic/AUC is always small, therefore the new marker sometimes fails to significantly improve C-Statistic/AUC.

这时,就需要用到我们今天要讲的综合判别改善指数IDI, 净重分类指数NRI指标。

Two new metrics, the integrated discrimination improvement (IDI) and net reclassification improvement (NRI), have been rapidly adopted to quantify the added value of a biomarker to an existing test.

净重分类指数NRI

一个新的指标或者新的模型是不是会提高分类效果,最终会体现在人数上,从这个角度考虑,我们可以去对比两个模型或者不同的指标对研究对象的正确划分情况,从而得到结论。

就是说我们的旧模型会把研究对象分类为患者和非患者,新的模型也会把研究对象分类为患者和非患者。此时比较新、旧模型对于研究人群的分类变化,就会发现有一部分研究对象原本在旧模型中被错分,但在新模型中得到了正确划分;同样也有一部分研究对象,原本在旧模型中分类正确,但在模型中却被错分,因此研究对象的分类在新、旧模型中会发生变化,我们利用这种重新分类的变化,来计算净重新分类指数NRI。

为了更好理解这种变化我们看下表:

在table3中,c1是原来模型没有预测对,新模型预测对的,同样的道理,b1是原来模型预测对,但新模型给预测错的,于是(c1 − b1)/N1便是疾病组或者event组增加的重分类的正确比。

同样我们可以得到非疾病组中(table 4)中增加的重分类正确比为(b2 − c2)/N2。

The NRIevents is the net proportion of patients with events reassigned to a higher risk category and the NRInonevents is the number of patients without events reassigned to a lower risk category

于是NRI = (c1 − b1)/N1 + (b2 − c2)/N2

因为NRI表示的是重分类的正确个案占比的增加量,所以NRI>0,则为正改善,说明新模型比旧模型的预测能力有所改善;若NRI<0,则为负改善,新模型预测能力下降;若NRI=0,则认为新模型没有改善。

综合判别改善指数IDI

刚刚我们介绍了NRI,NRI是从新旧模型的对个案预测正确数量占比增加的角度评估模型的,再换一种思路我们可以从概率增加的角度反映模型的优劣。

就是说在疾病组,模型预测阳性的概率要尽可能大,在非疾病组模型预测阳性的概率要尽可能小,通过模型的预测概率差值依然可以得到一个评价指数。如果新模型比原模型:在阳性组,预测阳性的概率比旧模型的大;在阴性组,预测阳性的概率比旧模型的小。那么就可以说明新模型比旧模型好。

这个指数就是IDI

IDI = (Pnew,events–Pold,events) – (Pnew,non-events – Pold,non-events)

其中Pnew,events表示在疾病组新模型的预测阳性概率,Pold,non-events表示在非疾病组旧模型的预测阳性概率。

就是说,IDI就等于疾病组新旧模型的预测阳性概率的差值减去非疾病组新旧模型预测阳性概率的差值(因为对于非疾病组模型预测阳性的概率应该是越小越好,所以中间是减号)这样IDI越大越说明新模型比旧模型预测效果更好。若IDI>0,则为正改善,说明新模型比旧模型的预测能力有所改善,若IDI<0,则为负改善,新模型预测能力下降,若IDI=0,则认为新模型没有改善。

做法实操

在R语言中我们可以用reclassification函数很方便地得到NRI和IDI,这个函数接受5个参数,参数说明如下图:

第一个是data是原始数据集,cOutcome参数是结局在原始数据集中的列的位置,比如原来数据集第二列是结局变量,cOutcome就设定为2;然后依次是旧模型和新模型的预测风险值,最后一个参数cutoff是模型分类的风险值截断点。

比如我现在有数据集如下

结局在数据集的第二列,我想比较只有age、sex的模型1和有age、sex、education的模型2,在设定预测风险值0.5为类别划分标准时两个模型的分类表现。在拟合好model1和model2后我可以写出如下代码:

model1 <-  glm(formula = `outcome(AMD)` ~Age  +Sex, family = binomial("logit"), data = Data)
model2 <- glm(formula = `outcome(AMD)` ~Age +Sex+ Education, family = binomial("logit"), data = Data)
predRisk1 <- predRisk(model1)
predRisk2 <- predRisk(model2)
cutoff <- c(0,.5,1)
reclassification(data=ExampleData, cOutcome=cOutcome,
predrisk1=predRisk1, predrisk2=predRisk2, cutoff)

运行代码后输出结果如下:

可以看到在风险截断值为0.5的时候NRI(Categorical)为0,说明增加edu的模型并没有使得分类模型变得更好。同时结果中也给出了NRI(Continuous)和IDI的点估计、p值和置信区间。均可以在论文中加以报告。

到这儿NRI和IDI就给大家介绍完了,大家以后在进行2个疾病模型比较,或者2个指标诊断效能比较时,除了传统的ROC曲线及其AUC,也可以同时给出NRI和IDI,更加全面多层次的展示模型的改善情况。

when comparing diagnostic power of two markers or comparing two predictive models, we could use not only AUC、C-statistics but also NRI and IDI, which could give a comprehensive perspective on how much the predictive performance improves.

we could not calculate NRI or IDI of one predictive model. IDI and NRI are calculated from the comparison of two models. One model does not have IDI or NRI.

文献推荐:
https://cdn.amegroups.cn/journals/amepc/files/journals/16/articles/29812/public/29812-PB1-1696-R4.pdf

R数据分析:净重新分类(NRI)和综合判别改善(IDI)指数的理解的更多相关文章

  1. R数据分析:二分类因变量的混合效应,多水平logistics模型介绍

    今天给大家写广义混合效应模型Generalised Linear Random Intercept Model的第一部分 ,混合效应logistics回归模型,这个和线性混合效应模型一样也有好几个叫法 ...

  2. R数据分析:纵向分类结局的分析-马尔可夫多态模型的理解与实操

    今天要给大家分享的统计方法是马尔可夫多态模型,思路来源是下面这篇文章: Ward DD, Wallace LMK, Rockwood K Cumulative health deficits, APO ...

  3. R数据分析:潜类别轨迹模型LCTM的做法,实例解析

    最近看了好多潜类别轨迹latent class trajectory models的文章,发现这个方法和我之前常用的横断面数据的潜类别和潜剖面分析完全不是一个东西,做纵向轨迹的正宗流派还是这个方法,当 ...

  4. R数据分析:跟随top期刊手把手教你做一个临床预测模型

    临床预测模型也是大家比较感兴趣的,今天就带着大家看一篇临床预测模型的文章,并且用一个例子给大家过一遍做法. 这篇文章来自护理领域顶级期刊的文章,文章名在下面 Ballesta-Castillejos ...

  5. R数据分析:如何简洁高效地展示统计结果

    之前给大家写过一篇数据清洗的文章,解决的问题是你拿到原始数据后如何快速地对数据进行处理,处理到你基本上可以拿来分析的地步,其中介绍了如何选变量如何筛选个案,变量重新编码,如何去重,如何替换缺失值,如何 ...

  6. R数据分析:临床预测模型中校准曲线和DCA曲线的意义与做法

    之前给大家写过一个临床预测模型:R数据分析:跟随top期刊手把手教你做一个临床预测模型,里面其实都是比较基础的模型判别能力discrimination的一些指标,那么今天就再进一步,给大家分享一些和临 ...

  7. 基于R数据分析之常用Package讲解系列--1. data.table

    利用data.table包变形数据 一. 基础概念 data.table 这种数据结构相较于R中本源的data.frame 在数据处理上有运算速度更快,内存运用更高效,可认为它是data.frame ...

  8. Python 爬取 热词并进行分类数据分析-[热词分类+目录生成]

    日期:2020.02.04 博客期:143 星期二   [本博客的代码如若要使用,请在下方评论区留言,之后再用(就是跟我说一声)] 所有相关跳转: a.[简单准备] b.[云图制作+数据导入] c.[ ...

  9. R数据分析:生存分析与有竞争事件的生存分析的做法和解释

    今天被粉丝发的文章给难住了,又偷偷去学习了一下竞争风险模型,想起之前写的关于竞争风险模型的做法,真的都是皮毛哟,大家见笑了.想着就顺便把所有的生存分析的知识和R语言的做法和论文报告方法都给大家梳理一遍 ...

  10. R数据分析:数据清洗的思路和核心函数介绍

    好多同学把统计和数据清洗搞混,直接把原始数据发给我,做个统计吧,这个时候其实很大的工作量是在数据清洗和处理上,如果数据很杂乱,清洗起来是很费工夫的,反而清洗好的数据做统计分析常常就是一行代码的事情. ...

随机推荐

  1. PHP提薪模块

    在使用es搜索的时候需要注意以下这几点 文档(Document)与索引(Index):在ES中,文档是最小的数据单元,类似于数据库中的一行记录.文档组织在索引中,索引类似于数据库中的表.了解如何创建索 ...

  2. uprobe

    本章的我们来学习uprobe ,顾名思义,相对于内核函数/地址的监控,主要用于用户态函数/地址的监控.听起来是不是有点神奇,内核怎么监控用户态函数的调用呢?本章的内容包括: 如何使用uprobe 内核 ...

  3. ArgoWorkflow教程(六)---无缝实现步骤间参数传递

    之前我们分析了,Workflow.WorkflowTemplate .template 3 者之间如何传递参数. 本文主要分析同一个 Workflow 中的不同 step 之间实现参数传递,比如将上一 ...

  4. MySQL故障诊断常用方法手册(含脚本、案例)

    当你在使用MySQL数据库时,突然遇到故障,你是否会感到迷茫? ● 数据库响应变慢.SQL慢.数据库插入出现延时-- ● 表不见了.日志出现多个断连记录-- ● 非法断电造成MySQL启动报错.同步复 ...

  5. 64.element表单校验注意点

    <!-- 表单验证三要素: --> <!-- ① el-form需要有 model属性[表单数据对象].rules属性[验证规则对象].ref属性[引用字符串] --> < ...

  6. 014 Python 的数据类型(数字、字符串、列表、字典)

    #!/usr/bin/env python # -*- coding:utf-8 -*- # Datatime:2022/7/24 20:31 # Filename:014 Python 的数据类型( ...

  7. work中模板、主题、样式集、样式的作用和使用方法

    [收藏]Word样式.样式集.主题.模版怎么区分?进来围观学习了~ 我们先来按照层次关系从小到大排序:样式<样式集<主题<模板 接下来,我们按照层次关系从小到大开始了解它们之间的的区 ...

  8. 二、java之面向对象

    面向对象 面向对象编程(Object-Oriented Programming,OOP) 面向对象编程的本质就是:以类的方式组织代码,以对象的组织(封装)数据 三大特性: ◆封装 ◆◆封装的概念 程序 ...

  9. Linux系统管理-yum源配置

    一.本地光盘yum源配置 1.创建挂载点 [root@localhost ~]# mkdir /mnt/cdrom 2.配置自动挂载本地光盘 [root@localhost ~]# vim /etc/ ...

  10. ROS入门21讲(6)

    十.ROS中的坐标系管理系统 1.机器人中的坐标变换 某位姿在A.B两个坐标系下的坐标变换 参考:<机器人学导论> 机器人系统中繁杂的坐标系 2.TF功能包 TF功能包能干什么? ①五秒钟 ...