前言:本文详细介绍了 HBase FamilyFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考。FamilyFilter 基于列族进行过滤,在工作中涉及到需要通过HBase 列族进行数据过滤时可以考虑使用它。比较器细节及原理请参照之前的更文:HBase Filter 过滤器之比较器 Comparator 原理及源码学习

一。Java Api

头部代码

public class FamilyFilterDemo  {

    private static boolean isok = false;
private static String tableName = "test";
private static String[] cfs = new String[]{"f1","f2"};
private static String[] data = new String[]{"row-1:f1:c1:v1", "row-2:f1:c2:v2", "row-3:f2:c3:v3", "row-4:f2:c4:v4"}; public static void main(String[] args) throws IOException { MyBase myBase = new MyBase();
Connection connection = myBase.createConnection();
if (isok) {
myBase.deleteTable(connection, tableName);
myBase.createTable(connection, tableName, cfs);
myBase.putRows(connection, tableName, data); // 造数据
}
Table table = connection.getTable(TableName.valueOf(tableName));
Scan scan = new Scan();

中部代码

向右滑动滚动条可查看输出结果。

1. BinaryComparator 构造过滤器

        FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("f1"))); // [row-1, row-2]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("f1"))); // [row-3, row-4]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.GREATER, new BinaryComparator(Bytes.toBytes("f1"))); // [row-3, row-4]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes("f1"))); // [row-1, row-2, row-3, row-4]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("f2"))); // [row-1, row-2]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("f1"))); // [row-1, row-2]

2. BinaryPrefixComparator 构造过滤器

        FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("f1"))); // [row-1, row-2]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("f1"))); // [row-3, row-4]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.GREATER, new BinaryComparator(Bytes.toBytes("f1"))); // [row-3, row-4]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes("f1"))); // [row-1, row-2, row-3, row-4]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("f2"))); // [row-1, row-2]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("f1"))); // [row-1, row-2]

3. SubstringComparator 构造过滤器

        FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("1")); // [row-1, row-2]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.NOT_EQUAL, new SubstringComparator("f")); // []

4. RegexStringComparator 构造过滤器

        FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.NOT_EQUAL, new RegexStringComparator("f")); // []
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("f")); // [row-1, row-2, row-3, row-4]
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("2")); // [row-3, row-4]

尾部代码

        scan.setFilter(familyFilter);
ResultScanner scanner = table.getScanner(scan);
Iterator<Result> iterator = scanner.iterator();
LinkedList<String> rowkeys = new LinkedList<>();
while (iterator.hasNext()) {
Result result = iterator.next();
String rowkey = Bytes.toString(result.getRow());
rowkeys.add(rowkey);
}
System.out.println(rowkeys);
scanner.close();
table.close();
connection.close();
}
}

二。Shell Api

1. BinaryComparator 构造过滤器

方式一:

hbase(main):002:0> scan 'test',{FILTER=>"FamilyFilter(=,'binary:f1')"}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1588834369334, value=v1
row-2 column=f1:c2, timestamp=1588834369334, value=v2
2 row(s) in 0.1000 seconds

支持的比较运算符:= != > >= < <=,不再一一举例。

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryComparator
import org.apache.hadoop.hbase.filter.FamilyFilter hbase(main):006:0> scan 'test',{FILTER => FamilyFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('f1')))}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1588834369334, value=v1
row-2 column=f1:c2, timestamp=1588834369334, value=v2
2 row(s) in 0.0350 seconds

支持的比较运算符:LESS、LESS_OR_EQUAL、EQUAL、NOT_EQUAL、GREATER、GREATER_OR_EQUAL,不再一一举例。

推荐使用方式一,更简洁方便。

2. BinaryPrefixComparator 构造过滤器

方式一:

hbase(main):007:0> scan 'test',{FILTER=>"FamilyFilter(=,'binaryprefix:f1')"}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1588834369334, value=v1
row-2 column=f1:c2, timestamp=1588834369334, value=v2
2 row(s) in 0.0600 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryPrefixComparator
import org.apache.hadoop.hbase.filter.FamilyFilter hbase(main):011:0> scan 'test',{FILTER => FamilyFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('f1')))}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1588834369334, value=v1
row-2 column=f1:c2, timestamp=1588834369334, value=v2
2 row(s) in 0.0290 seconds

其它同上。

3. SubstringComparator 构造过滤器

方式一:

hbase(main):012:0> scan 'test',{FILTER=>"FamilyFilter(=,'substring:f1')"}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1588834369334, value=v1
row-2 column=f1:c2, timestamp=1588834369334, value=v2
2 row(s) in 0.0400 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.FamilyFilter hbase(main):016:0> scan 'test',{FILTER => FamilyFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('f1'))}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1588834369334, value=v1
row-2 column=f1:c2, timestamp=1588834369334, value=v2
2 row(s) in 0.0330 seconds

区别于上的是这里直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。

4. RegexStringComparator 构造过滤器

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.FamilyFilter hbase(main):018:0> scan 'test',{FILTER => FamilyFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('f'))}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1588834369334, value=v1
row-2 column=f1:c2, timestamp=1588834369334, value=v2
row-3 column=f2:c3, timestamp=1588834369334, value=v3
row-4 column=f2:c4, timestamp=1588834369334, value=v4
4 row(s) in 0.0600 seconds

该比较器直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。若想使用第一种方式可以传入regexstring试一下,我的版本有点低暂时不支持,不再演示了。

注意这里的正则匹配指包含关系,对应底层find()方法。

FamilyFilter 不支持使用LongComparator比较器,且BitComparator、NullComparator 比较器用之甚少,也不再介绍。

查看文章全部源代码请访以下GitHub地址:

https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/FamilyFilterDemo.java

转载请注明出处!欢迎关注本人微信公众号【HBase工作笔记】

HBase Filter 过滤器之FamilyFilter详解的更多相关文章

  1. HBase Filter 过滤器之RowFilter详解

    前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考.RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase ...

  2. HBase Filter 过滤器之QualifierFilter详解

    前言:本文详细介绍了 HBase QualifierFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.QualifierFilter 基于列名进行过滤, ...

  3. HBase Filter 过滤器之 ValueFilter 详解

    前言:本文详细介绍了 HBase ValueFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.ValueFilter 基于列值进行过滤,在工作中涉及到需 ...

  4. HBase Filter 过滤器之 Comparator 原理及源码学习

    前言:上篇文章HBase Filter 过滤器概述对HBase过滤器的组成及其家谱进行简单介绍,本篇文章主要对HBase过滤器之比较器作一个补充介绍,也算是HBase Filter学习的必备低阶魂技吧 ...

  5. Java 容器之Hashset 详解

    Java 容器之Hashset 详解.http://blog.csdn.net/nvd11/article/details/27716511

  6. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(上)

    前言 Android中绘图离不开的就是Canvas了,Canvas是一个庞大的知识体系,有Java层的,也有jni层深入到Framework.Canvas有许多的知识内容,构建了一个武器库一般,所谓十 ...

  7. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(下)

    LinearGradient 线性渐变渲染器 LinearGradient中文翻译过来就是线性渐变的意思.线性渐变通俗来讲就是给起点设置一个颜色值如#faf84d,终点设置一个颜色值如#CC423C, ...

  8. hbase实践之数据读取详解

    hbase基本存储组织结构与数据读取组织结构对比 Segment是Hbase2.0的概念,MemStore由一个可写的Segment,以及一个或多个不可写的Segments构成.故hbase 1.*版 ...

  9. 网页元素定位神器之Xpath详解

    摘要: 经常在工作中会使用到XPath的相关知识,但每次总会在一些关键的地方不记得或不太清楚,所以免不了每次总要查一些零碎的知识,感觉即很烦又浪费时间,所以对XPath归纳及总结一下. ...     ...

随机推荐

  1. E - Roaming Atcoder

    题解:https://blog.csdn.net/qq_40655981/article/details/104459253 题目大意:n个房间,,每个房间都有一个人,一共k天,在一天,一个人可以到任 ...

  2. Python父类和子类关系/继承

    #!/usr/bin/env python # -*- coding: utf-8 -*- """ @File:继承_子类和父类的关系.py @E-mail:364942 ...

  3. Intellij IDEA 基础设置,个性化设置,好用的设置→_→

    Intellij IDEA 个性化设置 Appearance & Behavior 外观和行为 Keymap 快捷键 Editor 编辑器设置 Plugins 插件 Version Contr ...

  4. HBase可用性分析与高可用实践

    HBase作为一个分布式存储的数据库,它是如何保证可用性的呢?对于分布式系统的CAP问题,它是如何权衡的呢? 最重要的是,我们在生产实践中,又应该如何保证HBase服务的高可用呢? 下面我们来仔细分析 ...

  5. Ubuntu创建WiFi:16.0.4

    点击编辑链接,点击桌面状态栏的网络图标 点击增加 类型选择WiFi 名称.SSID,均要填写,模式选择:热点 wifi安全性:选择一个安全模式,这里选的是, wpa 及 wpa2个人 必须说的是:选择 ...

  6. 大数据并行计算框架Spark

    Spark2.1. http://dblab.xmu.edu.cn/blog/1689-2/ 0+入门:Spark的安装和使用(Python版) Spark2.1.0+入门:第一个Spark应用程序: ...

  7. AWR发现TOP Event log file sequential read

    对客户DB进行巡检,发现TOP EVENT是LOG FILE Sequential read 等待事件说明 https://www.xuebuyuan.com/zh-hant/1743045.html ...

  8. 上传文件的input问题以及FormData特性

    1.input中除了type="file"还要加上name="file",否则$_FILES为空,input的name值就是为了区分每一个input的 2.va ...

  9. 关于vagrant环境下项目中图片缓存的问题

    之前用的是iis所以可能没有这些问题,后来换了nginx之后发现图片缓存问题很严重,本项目用的是thinkphp5框架:浏览器.runtime.session.cookie.加参数,后台,所有缓存都清 ...

  10. Python学习16之input函数

    '''''''''Input函数:作用:接受一个标准输入数据返回值:返回为 string 类型使用:input()'''a=input("请输入一个整数")print(a)prin ...