spark aggregate算子
spark aggregate源代码
/**
* Aggregate the elements of each partition, and then the results for all the partitions, using
* given combine functions and a neutral "zero value". This function can return a different result
* type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U
* and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are
* allowed to modify and return their first argument instead of creating a new U to avoid memory
* allocation.
*/
def aggregate[U](zeroValue: U)(seqOp: JFunction2[U, T, U],
combOp: JFunction2[U, U, U]): U =
rdd.aggregate(zeroValue)(seqOp, combOp)(fakeClassTag[U])
aggregate用于聚合RDD中的元素,先使用seqOp将RDD中每个分区中的T类型元素聚合成U类型,
再使用combOp将之前每个分区聚合后的U类型聚合成U类型,注意seqOp和combOp都会使用zeroValue的值,zeroValue的类型为U。
样例代码:
需要注意的是:
单分区和多分区是不一样的。
List<Integer> list = new ArrayList<>();
list.add(2);
list.add(3);
list.add(2);
list.add(5);
list.add(2);
list.add(6); //单分区情况下
JavaRDD<Integer> rdd1 = sc.parallelize(list,1);
System.out.println("NumPartitions :"+rdd1.getNumPartitions()); int result1 = rdd1.aggregate(1, new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 * v2;//等同于zeroValue*2得到的值再*3...同理得到的值再*2*5*2*6等于720
}
}, new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;//等同于zeroValue+前面函数得到的值,也就是1+720=721
}
});
System.out.println("result1: "+result1); //多分区情况下
JavaRDD<Integer> rdd2 = sc.parallelize(list,2);
System.out.println("NumPartitions :"+rdd2.getNumPartitions());
JavaRDD<String> mapPartitionsWithIndex = rdd2.mapPartitionsWithIndex(new Function2<Integer, Iterator<Integer>, Iterator<String>>() {
@Override
public Iterator<String> call(Integer part_id, Iterator<Integer> iterator) throws Exception {
List<String> list = new ArrayList<>();
while (iterator.hasNext()) {
list.add("partition" + part_id + ":" + iterator.next());
}
return list.iterator();
}
}, true);
mapPartitionsWithIndex.foreachPartition((VoidFunction<Iterator<String>>) iterator -> {
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
});
//输出结果:
// partition0:2
// partition0:3
// partition0:2
// partition1:5
// partition1:2
// partition1:6 int result2 = rdd2.aggregate(2, new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 * v2;
//这次修改zeroValue为2
//partition0中的元素有2,3,2 计算结果是2*2*3*2=24 其中2指zeroValue
//partition0中的元素有5,2,6 计算结果是2*5*2*6=120 其中2指zeroValue
}
}, new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
//计算结果2+24+120=146,其中2指zeroValue
}
});
System.out.println("result2: "+result2);
spark aggregate算子的更多相关文章
- Spark RDD概念学习系列之Spark的算子的分类(十一)
Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformat ...
- Spark常用算子-KeyValue数据类型的算子
package com.test; import java.util.ArrayList; import java.util.List; import java.util.Map; import or ...
- Spark RDD概念学习系列之Spark的算子的作用(十四)
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算 ...
- Spark操作算子本质-RDD的容错
Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群 ...
- Spark RDD算子介绍
Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib) ...
- 列举spark所有算子
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可 ...
- java实现spark常用算子之groupbykey
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spa ...
- [大数据之Spark]——Actions算子操作入门实例
Actions reduce(func) Aggregate the elements of the dataset using a function func (which takes two ar ...
- spark aggregate函数详解
aggregate算是spark中比较常用的一个函数,理解起来会比较费劲一些,现在通过几个详细的例子带大家来着重理解一下aggregate的用法. 1.先看看aggregate的函数签名在spark的 ...
随机推荐
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 排版:引导主体副本
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- Elasticsearch 如何使用RESTful API
所有其他语言可以使用 RESTful API 通过端口 9200 和 Elasticsearch 进行通信,你可以用你最喜爱的 web 客户端访问 Elasticsearch .事实上,正如你所看到的 ...
- Redis实战(20)Redis 如何从海量数据中查询出某一个 Key?
序言 资料 https://www.cnblogs.com/vipstone/p/12373734.html
- java 8时间使用LocalDateTime,ZonedDateTime,LocalDate
前言 java 8的时间已经能够满足日常的使用,也方便理解.joda-time作为一个有优秀的时间组件也不得不告知使用者在java 8以后使用自带的时间 LocalDateTime以及ZonedDat ...
- Git远程分支代码强制回退&Tag添加
Git指令大全:https://www.alexkras.com/getting-started-with-git/ Git提交错了,还是Master分支,哎呦喂咋整?请见下文. [场景描述] 项 ...
- text-align:center;在ie7下,父级加上会让block状态的子元素居中。
text-align:center:在ie7下,父级加上会让block状态的子元素居中.ie8以上不会.
- 46 求1+2+3+...+n 静态成员函数和静态变量
题目描述 求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). 思路: 1)使用构造函数的方法,需要使用sta ...
- C++11并发编程3------线程传参
/* 基本类型传值 */ #include <iostream> #include <thread> void func(int num) { num = ; std::cou ...
- div背景图片自适应
对背景图片设置属性:background-size:cover;可以实现背景图片适应div的大小. background-size有3个属性: auto:当使用该属性的时候,背景图片将保持100% 的 ...
- .NET List<T>Conat vs AddRange
最大的不同在于AddRange改变了它所调用的列表,而Concat创建了一个新的List.因此它们有不同的用途. Concat也是一种适用于任何IEnumerable的扩展方法,并返回一个IEnume ...