=================第2周 神经网络基础===============

===2.1  二分分类===

===2.2  logistic 回归===

  It turns out, when you implement you implement your neural network, it will be easier to just keep b and w as separate parameters. 本课程中将分开考虑它们。

===2.3  logistic 回归损失函数===
  损失函数loss func是在单个样本上定义的,而代价函数cost func它衡量在全体训练样本上的表现。其实Logistic Model 可以被看作是 一个非常小的神经网络。
 
===2.4  梯度下降法===
  凸函数这性质是我们使用logistic回归的这个特定成本函数J的重要原因之一。通常用0来初始化<w, b>,其他初始化也ok。
  仔细体会下图,梯度,梯度的正负,负梯度才是下降方向。也体会下,如果某点的梯度为正,那w增大,J也会增大。
 
===2.5  导数===
  一个直观的理解是,delta_y的变化是 delta_x 的变化的 dy/dx 倍。导数的定义是你右移a 一个不可度量的无限小的值, f(a)会增加 df/da times a的改变值。
 
 
===2.6  更多导数的例子===
 
===2.7  计算图=== &
===2.8  计算图的导数计算===
  仔细体会一下,求导的链式法则,当a改变0.001时,J改变多少,a是如何影响J的。
 
 
===2.9  logistic 回归中的梯度下降法===
 
===2.10  m 个样本的梯度下降===
  m个样本的梯度下降的逐样本迭代版本。当你应用深度算法时,你会发现在代码中显式地使用for循环会使算法很低效。
 
===2.11  向量化===
  下面的比较可以看出,向量化了之后快了大概 300 倍。
       
 
  GPU和CPU都有并行化的指令,有时候会叫做SIMD指令(single instruction multiple data.),意思是如果你使用了这样的内置函数np.function or other functions that don't require you explicitly implementing a for loop. It enables Python numpy to take much better advantage of parallelism. 这点对GPU和CPU上面计算都是成立的,GPU非常擅长SIMD计算,but CPU is actually also not too bad at that. 经验法则是 只要有其他可能 就不要使用显式for循环。
 
 
===2.12  向量化的更多例子===
  尝试用numpy内置函数代替显示loop实现你想要的功能。
 
===2.13  向量化 logistic 回归===
 
===2.14  向量化 logistic 回归的梯度输出===
 
 
===2.15  Python 中的广播===
  Broadcasting。例子中的 cal 后面的 reshape 其实可以不用加,但当我编写Python代码时,if I'm not entirely sure what matrix, whether the dimensions of a matrix, 我会经常调用reshape命令 确保它是正确的列向量或行向量。
 
===2.16  关于 python / numpy 向量的说明===
  注意在 In[7] 的这个数据结构中 有2个方括号,之前只有1个,So that's the difference between this is really a 1 by 5 matrix versus one of these rank 1 arrays

  rank 1 array 的行为和行向量或列向量都不一样,which makes some of its effects nonintuitive. 我的建议是不要使用它们。如果某些时候确实得到了rank 1 array,你可以用reshape,使它的行为更好预测。

===2.17  Jupyter / Ipython 笔记本的快速指南===
  使用愉快:)
 
===2.18  (选修)logistic代价函数的推导===
  If you assume that the training examples I've drawn independently or drawn IID, then the probability of the example is the product of probabilities. 从1到m的 p(y^(i) |x^(i))的概率乘积。
 
 
 

Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 2. 神经网络基础)的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 3—多分类逻辑回归和神经网络

    作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCo ...

  2. Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 1. 深度学习概论)

     =================第1周 循环序列模型=============== ===1.1 欢迎来到深度学习工程师微专业=== 我希望可以培养成千上万的人使用人工智能,去解决真实世界的实际问 ...

  3. 百度首席科学家 Andrew Ng谈深度学习的挑战和未来(转载)

    转载:http://www.csdn.net/article/2014-07-10/2820600 人工智能被认为是下一个互联网大事件,当下,谷歌.微软.百度等知名的高科技公司争相投入资源,占领深度学 ...

  4. 《Andrew Ng深度学习》笔记1

    深度学习概论 1.什么是神经网络? 2.用神经网络来监督学习 3.为什么神经网络会火起来? 1.什么是神经网络? 深度学习指的是训练神经网络.通俗的话,就是通过对数据的分析与计算发现自变量与因变量的映 ...

  5. 《Andrew Ng深度学习》笔记4

    浅层神经网络 1.激活函数 在神经网络中,激活函数有很多种,常用的有sigmoid()函数,tanh()函数,ReLu函数(修正单元函数),泄露ReLu(泄露修正单元函数).它们的图形如下: sigm ...

  6. 《Andrew Ng深度学习》笔记3

    浅层神经网络 初步了解了神经网络是如何构成的,输入+隐藏层+输出层.一般从输入层计算为层0,在真正计算神经网络的层数时不算输入层.隐藏层实际就是一些算法封装成的黑盒子.在对神经网络训练的时候,就是对神 ...

  7. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  8. 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】

    [吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电 ...

  9. DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络

    介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程 ...

  10. [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...

随机推荐

  1. 【Copy攻城狮日志】docker搭建jenkins拉取svn代码打包vue项目部署到nginx

    ↑开局一张图,故事全靠编↑ 前言 打开搜索引擎输入『Copy攻城狮』,发现最新的一条记录已经是去年的4月,意味着我又有一年时间没有再总结成长了.习惯了“温水煮青蛙”的日子,无论是经验水平还是薪资收入, ...

  2. 如何同时关联多个远程仓库,实现一次 push 多站提交(github + gitee)

    这两天做了简陋轮子,主要想放到npm上, Github: canvas-components Gitee: canvas-components github 上一份,gitee 上一份.(走过路过,s ...

  3. 机器人操作系统——ROS,Robot Operating System

    Note:偶然看到的滴滴研究院的无人驾驶竞赛,了解一下. ROS:专为机器人软件开发所设计出来的一套电脑操作系统架构.是一个开源的元级操作系统(后操作系统),提供类似操作系统的服务,包括硬件抽象描述. ...

  4. data类型的url

      所谓"data"类型的Url格式,是在RFC2397中 提出的,目的对于一些"小"的数据,可以在网页中直接嵌入,而不是从外部文件载入.例如对于img这个Ta ...

  5. Rocket - diplomacy - DUEB参数模型分析

    https://mp.weixin.qq.com/s/533bJxcPRgO4W2gf_OEhEw   分析DUEB参数模型中各种参数类型的可能性.     1. 节点类型   根据参数的传播方向,可 ...

  6. jchdl - RTL实例 - AndReg

    https://mp.weixin.qq.com/s/p4-379tBRYKCYBk8AZoT8A   输入两组线相与,结果输出到寄存器.   参考链接 https://github.com/wjcd ...

  7. Java实现 蓝桥杯 算法提高 概率计算

    算法提高 概率计算 时间限制:1.0s 内存限制:256.0MB 问题描述 生成n个∈[a,b]的随机整数,输出它们的和为x的概率. 输入格式 一行输入四个整数依次为n,a,b,x,用空格分隔. 输出 ...

  8. Java实现 蓝桥杯VIP 算法提高 计算器

    算法提高 计算器 时间限制:1.0s 内存限制:256.0MB [问题描述] 王小二的计算器上面的LED显示屏坏掉了,于是他找到了在计算器维修与应用系学习的你来为他修计算器. 屏幕上可以显示0~9的数 ...

  9. Java实现 蓝桥杯 历届试题 城市建设

    问题描述 栋栋居住在一个繁华的C市中,然而,这个城市的道路大都年久失修.市长准备重新修一些路以方便市民,于是找到了栋栋,希望栋栋能帮助他. C市中有n个比较重要的地点,市长希望这些地点重点被考虑.现在 ...

  10. java实现第二届蓝桥杯最小公倍数(c++)

    最小公倍数. 为什么1小时有60分钟,而不是100分钟呢?这是历史上的习惯导致. 但也并非纯粹的偶然:60是个优秀的数字,它的因子比较多. 事实上,它是1至6的每个数字的倍数.即1,2,3,4,5,6 ...