ElasticSearch中倒排索引和正向索引
ElasticSearch搜索使用的是倒排索引,但是排序、聚合等不适合倒排索引使用的是正向索引

倒排索引
倒排索引表以字或词为关键字进行索引,表中关键字所对应的记录项记录了出现这个字或词的所有文档,每个字段记录该文档的ID和关键字在该文档中出现的位置情况。
倒排表的结构图如图2:

如下就是倒排索引,对语句进行分词,按照单位进行索引

由于每个字或词对应的文档数量在动态变化,所以倒排表的建立和维护都较为复杂,但是一旦完成创建,在查询的时候由于可以一次得到查询关键字所对应的所有文档
例如查询hello,通过hello就能够知道包含了hello的全部文档,便于搜索
得到正向索引的结构如下:



而非

Fielddata
Doc values 是不支持 analyzed 字符串字段的,然而,这些字段仍然可以使用聚合,是因为使用了fielddata 的数据结构。与 doc values 不同,fielddata 构建和管理 100% 在内存中,常驻于 JVM 内存堆。
Fielddata默认是不启用的,因为text字段比较长,一般只做关键字分词和搜索,很少拿它来进行全文匹配和聚合还有排序,因为大多数这种情况是无意义的,一旦启用将会把text都加载到内存中,那将带来很大的内存压力。
Fielddata一些特性:
- Fielddata 是延迟加载的。如果你从来没有聚合一个分析字符串,就不会加载 fielddata 到内存中,是在查询时候构建的。
- fielddata 是基于字段加载的, 只有很活跃地使用字段才会增加fielddata 的负担。
- fielddata 会加载索引中(针对该特定字段的) 所有的文档,而不管查询是否命中。逻辑是这样:如果查询会访问文档 X、Y 和 Z,那很有可能会在下一个查询中访问其他文档。
- 如果空间不足,使用最久未使用(LRU)算法移除fielddata。
所以,fielddata应该在JVM中合理利用,否则会影响es性能。
如果一次性加载字段直接超过内存值会发生什么?挂掉?所以es为了防止这种情况,采用了circuit breaker(熔断机制)。
它通过内部检查(字段的类型、基数、大小等等)来估算一个查询需要的内存。它然后检查要求加载的 fielddata 是否会导致 fielddata 的总量超过堆的配置比例。如果估算查询大小超出限制,就会触发熔断,查询会被中止并返回异常。
indices.breaker.fielddata.limit fielddata级别限制,默认为堆的60%
indices.breaker.request.limit request级别请求限制,默认为堆的40%
indices.breaker.total.limit 保证上面两者组合起来的限制,默认堆的70%
最后
1.ElasticSearch原理是倒排索引和正排索引的转化版
2.DocValues满足非analyed字段的正排索引转化版,Fielddata对应analyed
3.DocValues存在于磁盘,消耗Lucene内存来提升效率,Fielddata存在于ElasticSearch内存(jvm)
作者:激情的狼王
链接:https://www.jianshu.com/p/04837bf5863f
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
ElasticSearch中倒排索引和正向索引的更多相关文章
- 高效管理 Elasticsearch 中基于时间的索引——本质是在利用滚动模式做数据的冷热分离,热索引可以用ssd
高效管理 Elasticsearch 中基于时间的索引 转自:http://stormluke.me/es-managing-time-based-indices-efficiently/ 用 Ela ...
- 一文带您了解 Elasticsearch 中,如何进行索引管理(图文教程)
欢迎关注笔者的公众号: 小哈学Java, 每日推送 Java 领域干货文章,关注即免费无套路附送 100G 海量学习.面试资源哟!! 个人网站: https://www.exception.site/ ...
- Elasticsearch学习之图解Elasticsearch中的_source、_all、store和index属性
转自 : https://blog.csdn.net/napoay/article/details/62233031 1. 概述 Elasticsearch中有几个关键属性容易混淆,很多人搞不清楚_s ...
- 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作(二)
CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...
- 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作
http://www.cnblogs.com/wgp13x/p/4934521.html 内容一样,样式好的版本. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据 ...
- Elasticsearch 中为什么选择倒排索引而不选择 B 树索引
目录 前言 为什么全文索引不使用 B+ 树进行存储 全文检索 正排索引 倒排索引 倒排索引如何存储数据 FOR 压缩 RBM 压缩 倒排索引如何存储 字典树(Tria Tree) FST FSM 构建 ...
- ES 16 - 对Elasticsearch中的索引数据进行增删改查 (CRUD)
目录 1 创建document 1.1 创建时手动指定id 1.2 创建时自动生成id 2 查看document 2.1 根据id查询文档 2.2 通过_source字段控制查询结果 3 修改docu ...
- ES doc_values的来源,field data——就是doc->terms的正向索引啊,不过它是在查询阶段通过读取倒排索引loading segments放在内存而得到的?
Support in the Wild: My Biggest Elasticsearch Problem at Scale Java Heap Pressure Elasticsearch has ...
- Elasticsearch中的索引管理和搜索常用命令总结
添加一个index,指定分片是3,副本是1 curl -XPUT "http://10.10.110.125:9200/test_ods" -d' { "settings ...
随机推荐
- vc程序设计--图形绘制1
利用绘图函数创建填充区.Windows通过使用当前画笔画一个图形的边界,然后用当前的刷子填充这个图形来创建-一个填充图形.共有三个填充图形,第一个是用深灰色画刷填充带圆角的矩形,第二个是采用亮 ...
- golang内置类型和内置函数
golang内置类型和内置函数是不需要引入包直接可用的 golang内置类型: 数值类型 string int,unint float32,float64 bool array 有长度的 comple ...
- [源码解析]为什么mapPartition比map更高效
[源码解析]为什么mapPartition比map更高效 目录 [源码解析]为什么mapPartition比map更高效 0x00 摘要 0x01 map vs mapPartition 1.1 ma ...
- 非阻塞赋值(Non-blocking Assignment)是个伪需求
https://mp.weixin.qq.com/s/mH84421WDGRb7cuU5FEFIQ Verilog的赋值很是复杂,包括: 1. Continuous assignment; 2. Pr ...
- Java实现 LeetCode 749 隔离病毒(DFS嵌套)
749. 隔离病毒 病毒扩散得很快,现在你的任务是尽可能地通过安装防火墙来隔离病毒. 假设世界由二维矩阵组成,0 表示该区域未感染病毒,而 1 表示该区域已感染病毒.可以在任意 2 个四方向相邻单元之 ...
- Java实现 LeetCode 707 设计链表(环形链表)
707. 设计链表 设计链表的实现.您可以选择使用单链表或双链表.单链表中的节点应该具有两个属性:val 和 next.val 是当前节点的值,next 是指向下一个节点的指针/引用.如果要使用双向链 ...
- Java实现蓝桥杯算法提高P0102
算法提高 P0102 时间限制:1.0s 内存限制:256.0MB 提交此题 用户输入三个字符,每个字符取值范围是0-9,A-F.然后程序会把这三个字符转化为相应的十六进制整数,并分别以十六进制,十进 ...
- Java实现 LeetCode 598 范围求和 II(最小值相乘)
598. 范围求和 II 给定一个初始元素全部为 0,大小为 m*n 的矩阵 M 以及在 M 上的一系列更新操作. 操作用二维数组表示,其中的每个操作用一个含有两个正整数 a 和 b 的数组表示,含义 ...
- Java实现 LeetCode70 爬楼梯
70. 爬楼梯 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: ...
- Java实现夺冠概率模拟
足球比赛具有一定程度的偶然性,弱队也有战胜强队的可能. 假设有甲.乙.丙.丁四个球队.根据他们过去比赛的成绩,得出每个队与另一个队对阵时取胜的概率表: 甲 乙 丙 丁 甲 - 0.1 0.3 0.5 ...