PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]
题目
A traveler’s map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (<=500) is the number of cities (and hence the cities are numbered from 0 to N-1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:
City1 City2 Distance Cost
where the numbers are all integers no more than 500, and are separated by a space.
Output Specification:
For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.
Sample Input
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
Sample Output
0 2 3 3 40
题意
地图上显示了城市间高速公路的距离和费用,计算起点到终点距离最短的路线,如果有多条距离最短路线,取费用最低的最短路线
题目分析
已知图的顶点、边、两种边权(距离和费用),求单源带权最短路径,要求距离最短,若距离最短路径有多条,取费用最低的最短路径
解题思路
- 存储图信息
邻接矩阵
邻接表 - 求最短路径
2.1 dijkstra算法,求距离最短路径的同时,求出距离最短并且费用最少的最短路径
2.2 dijkstra算法,求出所有距离最短路径并存储,dfs遍历所有距离最短路径,求出距离最短并且费用最少的最短路径
int gw[maxn][maxn] //记录边权-距离
int ct[maxn][maxn] //记录边权-费用
int dist[maxn] //dijkstra记录从源点到其他顶点的最短距离
int path[maxn] //dijskstra记录最短距离路径
int act[maxn] //dijskstra记录从源点到其他顶点的最少费用
int col[maxn] //标记已收集到最短路径中的顶点
- 打印最短路径
3.1 利用栈(先进后出)
3.2 dfs
Code
Code 01(邻接矩阵 dijskstra求距离最短费用最少路径)
#include <iostream>
#include <stack>
using namespace std;
const int maxn=510;
const int INF=0x7fffffff;
int n,s,d,gw[maxn][maxn],ct[maxn][maxn];// gw边权-距离;ct边权-费用
int dist[maxn],path[maxn],act[maxn]; //act 总边权-总费用;
int col[maxn];//col 已收集到最短路径标记
/* dijkstra 求单源带权最短路径 */
void dijkstra(int x) {
/*1 初始化*/
fill(dist,dist+maxn,INF);
fill(act,act+maxn,INF);
fill(path,path+maxn,-1);
dist[x]=0;
act[x]=0;
for(int j=0; j<n; j++) {
/*2 查找最小dist*/
int mind=INF,min=-1;
for(int i=0; i<n; i++) {
if(col[i]==0 && dist[i]<mind) {
mind=dist[i];
min=i;
}
}
if(min==-1||min==d)break;
col[min]=1;
/*3 最小路径*/
for(int i=0; i<n; i++) {
if(gw[min][i]==0||col[i]==1)continue;
if(dist[i]>dist[min]+gw[min][i]) {
dist[i]=dist[min]+gw[min][i];
path[i]=min;
act[i]=act[min]+ct[min][i];
} else if(dist[i]==dist[min]+gw[min][i]&&act[i]>act[min]+ct[min][i]) {
path[i]=min;
act[i]=act[min]+ct[min][i];
}
}
}
}
/* 打印最短路径 方法一*/
void dfs(int y) {
if(y==-1)return;
dfs(path[y]);
printf("%d ",y);
}
/* 打印最短路径 方法二*/
//void ppt(int y) {
// stack<int> sk;
// int p=y;
// while(p!=-1) {
// sk.push(p);
// p=path[p];
// }
// while(!sk.empty()) {
// printf("%d ",sk.top());
// sk.pop();
// }
//}
int main(int argc,char * argv[]) {
int m,a,b;
scanf("%d %d %d %d",&n,&m,&s,&d);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
scanf("%d",&gw[a][b]);
scanf("%d",&ct[a][b]);
gw[b][a]=gw[a][b];
ct[b][a]=ct[a][b];
}
dijkstra(s);
dfs(d);
// ppt(d);
printf("%d %d",dist[d],act[d]);
return 0;
}
Code 02(邻接矩阵 dijkstra求最短距离路径 dfs求最少费用路径)
#include <iostream>
#include <vector>
using namespace std;
const int INF=0x7fffffff;
const int maxn = 510;
int gw[maxn][maxn],ct[maxn][maxn];
int dist[maxn],path[maxn],act[maxn],col[maxn];
int n,m,s,d,minct=INF;
vector<int> pre[maxn],tempth,fp;
void dijkstra(int v) {
fill(dist,dist+maxn,INF);
fill(path,path+maxn,-1);
fill(act,act+maxn,INF);
dist[v]=0;
act[v]=0;
for(int i=0; i<n; i++) {
int min=-1,mind=INF;
for(int j=0; j<n; j++) {
if(col[j]==0&&dist[j]<mind) {
mind=dist[j];
min=j;
}
}
if(min==-1||min==d)break;
col[min]=1;
for(int j=0; j<n; j++) {
if(gw[min][j]==0||col[j]==1)continue;
if(dist[min]+gw[min][j]<dist[j]) {
dist[j]=dist[min]+gw[min][j];
path[j]=min;
pre[j].clear();
pre[j].push_back(min);
} else if(dist[min]+gw[min][j]==dist[j]) {
path[j]=min;
pre[j].push_back(min);
}
}
}
}
void dfs(int u) {
if(u==s) {
tempth.push_back(u);
int tempct=0;
for(int i=tempth.size()-1; i>=1; i--) {
tempct+=ct[tempth[i]][tempth[i-1]];
}
if(minct>tempct) {
minct=tempct;
fp = tempth;
}
tempth.pop_back();
return;
}
tempth.push_back(u);
for(int i=0; i<pre[u].size(); i++) {
dfs(pre[u][i]);
}
tempth.pop_back();
}
int main(int argc,char * argv[]) {
scanf("%d %d %d %d",&n,&m,&s,&d);
int a,b;
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
scanf("%d",&gw[a][b]);
scanf("%d",&ct[a][b]);
gw[b][a]=gw[a][b];
ct[b][a]=ct[a][b];
}
dijkstra(s);
dfs(d);
for(int i=fp.size()-1; i>=0; i--) {
printf("%d ",fp[i]);
}
printf("%d %d",dist[d],minct);
return 0;
}
Code 03(邻接表 dijskstra求距离最短费用最少路径)
#include <iostream>
#include <vector>
using namespace std;
const int maxn=510;
const int INF=0x7fffffff;
int n,s,d;// gw边权-距离;ct边权-费用
int dist[maxn],path[maxn],act[maxn]; //act 总边权-总费用;
int col[maxn];//col 已收集到最短路径标记
struct node{
int v;
int sw; //距离
int cw; //费用
};
vector<node> g[maxn];
/* dijkstra 求单源带权最短路径 */
void dijkstra(int x) {
/*1 初始化*/
fill(dist,dist+maxn,INF);
fill(act,act+maxn,INF);
fill(path,path+maxn,-1);
dist[x]=0;
act[x]=0;
for(int j=0; j<n; j++) {
/*2 查找最小dist*/
int mind=INF,min=-1;
for(int i=0; i<n; i++) {
if(col[i]==0 && dist[i]<mind) {
mind=dist[i];
min=i;
}
}
if(min==-1||min==d)break;
col[min]=1;
/*3 最小路径*/
for(int i=0; i<g[min].size(); i++) {
node u=g[min][i];
if(col[u.v]==1)continue;
if(dist[u.v]>dist[min]+u.sw) {
dist[u.v]=dist[min]+u.sw;
path[u.v]=min;
act[u.v]=act[min]+u.cw;
} else if(dist[u.v]==dist[min]+u.sw&&act[u.v]>act[min]+u.cw) {
path[u.v]=min;
act[u.v]=act[min]+u.cw;
}
}
}
}
/* 打印最短路径 方法一*/
void dfs(int y) {
if(y==-1)return;
dfs(path[y]);
printf("%d ",y);
}
/* 打印最短路径 方法二*/
//void ppt(int y) {
// stack<int> sk;
// int p=y;
// while(p!=-1) {
// sk.push(p);
// p=path[p];
// }
// while(!sk.empty()) {
// printf("%d ",sk.top());
// sk.pop();
// }
//}
int main(int argc,char * argv[]) {
int m,a,b,sw,cw;
scanf("%d %d %d %d",&n,&m,&s,&d);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
scanf("%d",&sw);
scanf("%d",&cw);
g[a].push_back({b,sw,cw});
g[b].push_back({a,sw,cw});
}
dijkstra(s);
dfs(d);
// ppt(d);
printf("%d %d",dist[d],act[d]);
return 0;
}
Code 04 (邻接表 dijkstra求最短距离路径 dfs求最少费用路径)
因为该求解方法,dfs中需要根据顶点a,b寻找边,若使用邻接表,需要遍历g[a]的所有有关联的顶点,找到b的node
非要使用邻接表可以使用map<int,node> g[maxn];

PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]的更多相关文章
- PAT Advanced 1111 Online Map (30) [Dijkstra算法 + DFS]
题目 Input our current position and a destination, an online map can recommend several paths. Now your ...
- PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)
1030 Travel Plan (30 分) A traveler's map gives the distances between cities along the highways, to ...
- PAT A 1030. Travel Plan (30)【最短路径】
https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...
- PAT Advanced 1072 Gas Station (30) [Dijkstra算法]
题目 A gas station has to be built at such a location that the minimum distance between the station an ...
- PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS
PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...
- [图算法] 1030. Travel Plan (30)
1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...
- PAT Advanced 1018 Public Bike Management (30) [Dijkstra算法 + DFS]
题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...
- 1030 Travel Plan (30)(30 分)
A traveler's map gives the distances between cities along the highways, together with the cost of ea ...
- PAT (Advanced Level) 1030. Travel Plan (30)
先处理出最短路上的边.变成一个DAG,然后在DAG上进行DFS. #include<iostream> #include<cstring> #include<cmath& ...
随机推荐
- P1060 爱丁顿数
P1060 爱丁顿数 转跳点:
- CodeForces - 869C The Intriguing Obsession(组合数)
题意:有三个集合,分别含有a.b.c个点,要求给这些点连线,也可以全都不连,每两点距离为1,在同一集合的两点最短距离至少为3的条件下,问有多少种连接方案. 分析: 1.先研究两个集合,若每两个集合都保 ...
- Python测试进阶——(3)编写Python程序监控计算机的服务是否正常运行
用python写了个简单的监控进程的脚本,当发现进程消失的时候,立即调用服务,开启服务. 脚本的工作原理是这样的:脚本读取配置文件,读取预先配置好的调用系统服务的路径和所要监控的服务在进程管理器中的进 ...
- Windows 运行chkdsk磁盘修复工具命令参数详解
chkdsk是Windows系统自带的磁盘修复工具,通常在电脑非正常关机之后再开机,系统就会自动调用chkdsk工具进行磁盘扫描和修复.同时,我们也可以在Windows系统中打开命令提示符,手动运行c ...
- ROS学习笔记7-理解服务(services)和参数(parameter)
本文内容来自官方wiki:http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams ROS服务(service)服务也是ROS中一种通 ...
- RDD 可视化 —— RDDOperationScope.withScope
最近在看各种博客,学习 spark 源代码. 网上对源代码的分析基本都是基于 0.7, 0.8, 1.0 的代码,而现在的发行版已经是 1.5 了.所以有些代码不大对的上.比如函数 RDD.map() ...
- 7.8 Varnish 其他命令
- POJ 3090 欧拉函数
求一个平面内可见的点,其实就是坐标互质即可,很容易看出来或者证明 所以求对应的欧拉函数即可 #include <iostream> #include <cstdio> #inc ...
- Go——标准库使用代理
本文知识点 Go的安装 Go使用代理 Go进阶学习 环境配置 Go的安装 确认环境都安装好了,看看go的版本. go version 代码样例 使用代理,发送GET请求 package main im ...
- 利用 Python 破解 ZIP 或 RAR 文件密码
我们经常会从网络上下载一些带密码的压缩包,想要获取里面的内容,往往就要给提供商支付一些费用.想要白嫖其中的内容,常见的做法是百度搜索一些压缩包密码破解软件,但后果相信体验过的人都知道.本文将会利用 P ...