可信度的估计

  • 二项分布中的\(p\) 服从Beta分布 $ {\rm beta}(\alpha, \beta)$, 密度函数 \(\frac1{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta -1}\)
  • 均值 \(\frac \alpha {\alpha + \beta}\)
  • 方差 \(\frac {\alpha \beta} {(\alpha+\beta)^2 (\alpha+ \beta + 1) } ​\)

from scipy.stats import beta def confidence(n_bad, n_good, tol=2):
''' 返回估计的坏率p, 以及在tol倍标准差下的可信度'''
a, b = n_bad+1, n_good+1
p = a / (a+b)
v = beta.std(a, b)
up, low = min(1, p + v*tol), max(0, p - v*tol)
d = beta.cdf(up, a,b) - beta.cdf(low, a,b)
return p, v, d test_set = [
(500, 20000, 2),
(1000, 200000, 2),
(2000, 200000, 2),
(5000, 200000, 2),
(500, 100000, 2),
(1000, 100000, 2),
(2000, 100000, 2),
(5000, 100000, 2),
(2000, 10000, 2),
] print(" bad; total; 均值p; 标准差v; 均值的相对误差e; 置信度")
for (n_bad, n_good, tol) in test_set:
p,v,d = confidence(n_bad, n_good, tol) ss = ('{:5d};{:7d}; p={p:0.4f}; v={v:0.6f}; e={e:0.3f}; '
+ '均值在[p - {t}v, p + {t}v]的概率 {d:2.2f}%'
).format(n_bad, n_bad+n_good, p=p,v=v, c=v/p, d =d*100,t=tol, e=tol*v/p)
print(ss)
  bad;  total; 均值p;    标准差v;     均值的相对误差e;  置信度
500; 20500; p=0.0244; v=0.001078; e=0.088; 均值在[p - 2v, p + 2v]的概率 95.46%
1000; 201000; p=0.0050; v=0.000157; e=0.063; 均值在[p - 2v, p + 2v]的概率 95.46%
2000; 202000; p=0.0099; v=0.000220; e=0.044; 均值在[p - 2v, p + 2v]的概率 95.45%
5000; 205000; p=0.0244; v=0.000341; e=0.028; 均值在[p - 2v, p + 2v]的概率 95.45%
500; 100500; p=0.0050; v=0.000222; e=0.089; 均值在[p - 2v, p + 2v]的概率 95.46%
1000; 101000; p=0.0099; v=0.000312; e=0.063; 均值在[p - 2v, p + 2v]的概率 95.46%
2000; 102000; p=0.0196; v=0.000434; e=0.044; 均值在[p - 2v, p + 2v]的概率 95.45%
5000; 105000; p=0.0476; v=0.000657; e=0.028; 均值在[p - 2v, p + 2v]的概率 95.45%
2000; 12000; p=0.1667; v=0.003402; e=0.041; 均值在[p - 2v, p + 2v]的概率 95.45%

结论: 坏样本大于2000以上, 在95%置信度下, 坏率的相对误差<5%

beta函数与置信度估计的更多相关文章

  1. 两个Beta函数类型的积分及其一般形式

    \[\Large\displaystyle \int_{0}^{1}\frac{\sqrt[4]{x\left ( 1-x \right )^{3}}}{\left ( 1+x \right )^{3 ...

  2. beta函数分布图

    set.seed(1) x<-seq(-5,5,length.out=10000) a = c(.5,0.6, 0.7, 0.8, 0.9) b = c(.5, 1, 1, 2, 5) colo ...

  3. [再寄小读者之数学篇](2014-06-20 Beta 函数)

    令 $\dps{B(m,n)=\sum_{k=0}^n C_n^k \cfrac{(-1)^k}{m+k+1}}$, $m,n\in\bbN^+$. (1) 证明 $B(m,n)=B(n,m)$; ( ...

  4. Matlab常用函数集锦

    ndims(A)返回A的维数size(A)返回A各个维的最大元素个数length(A)返回max(size(A))[m,n]=size(A)如果A是二维数组,返回行数和列数nnz(A)返回A中非0元素 ...

  5. MATLAB相关快捷键以及常用函数

    MATLAB快捷键大全 F1帮助 F2改名F3搜索 F4地址 F5刷新 F6切换 F10菜单 CTRL+A全选 CTRL+C复制 CTRL+X剪切 CTRL+V粘贴 CTRL+Z撤消 CTRL+O打开 ...

  6. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  7. 数理统计4:均匀分布的参数估计,次序统计量的分布,Beta分布

    接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝 ...

  8. Beta分布和Dirichlet分布

    在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...

  9. LDA-math-神奇的Gamma函数

    http://cos.name/2013/01/lda-math-gamma-function/ 1. 神奇的Gamma函数1.1 Gamma 函数诞生记学高等数学的时候,我们都学习过如下一个长相有点 ...

随机推荐

  1. torch.cuda.FloatTensor

    Pytorch中的tensor又包括CPU上的数据类型和GPU上的数据类型,一般GPU上的Tensor是CPU上的Tensor加cuda()函数得到. 一般系统默认是torch.FloatTensor ...

  2. kibana下载与安装

    目录 简介 下载 安装 测试 简介 Kibana是一个为ElasticSearch 提供的数据分析的 Web 接口.可使用它对日志进行高效的搜索.可视化.分析等各种操作.安装之前有话说: 安装路径不要 ...

  3. ROS2学习日志:QoS学习日志

    QoS学习日志 参考:ROS2API 及 https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings 1.概述 ...

  4. POJ1833 & POJ3187 & POJ3785

    要是没有next_permutation这个函数,这些题觉得还不算特别水,不过也不一定,那样可能就会有相应的模板了.反正正是因为next_permutation这个函数,这些题包括之前的POJ1226 ...

  5. HDU 5282:Senior's String

    Senior's String  Accepts: 30  Submissions: 286  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit ...

  6. mysql字符串操作

    https://h.w.com/lin/h ) 效果: https://h.w.com huangwanlin ) 效果: huang huangwanlin ) 效果: wanlin huangxi ...

  7. C# Socket编程入门

    一直没有触及到这一块儿,学习下 在看一个小demo   https://www.cnblogs.com/yy3b2007com/p/7476458.html

  8. mariadb主从

    实验环境: 两台centos7 master:192.168.1.6 slave:192.168.1.7 一.安装mariadb服务 [root@master ~]# yum -y install m ...

  9. C#构造函数调用其他构造函数

    http://blog.csdn.net/dogfish/article/details/6990266  <-- 虏来的地 public class Class1 { public Class ...

  10. Cordova搭建环境与问题小结

    1.Cordova介绍: Apache Cordova是一套设备API,允许移动应用的开发者使用JavaScript来访问本地设备的功能,比如摄像头.加速计.它可以与UI框架(如jQuery Mobi ...