二值化

设置一个condition,把连续型的数据分类两类。比如Age,大于30,和小于30。

from sklearn.preprocessing import Binerize as Ber
x = data_2.iloc[:,0].values.reshpe(-1,1) #提取数据
trans = Ber(threshold = 30).fit_transform(x)
trans

这是x中>30的设置为1,其他的设置为0.

标签

有时数据可能需要对数据进行分箱化处理,或者给不同的数据设置不同的标签。

from sklearn.preprocessing import LabelEncoder as le
l = le()
l=l.fit(y)
label =l.transform(y)

可以在l对象,用classes_属性,查看总共有多少类。

l.classes_

array(['No', 'Unknown', 'Yes'], dtype=object)

label中就是处理过的数据。可直接写成:

from sklearn.preprocessing import LabelEncoder
data.iloc[:,-1]=LabelEncoder().fit_transform(data.iloc[:,-1])

独热编码

如果数据是有序,但不能进行计算。比如小学、中学、大学。如果用1,2,3分别进行替代。那么计算时,可能会将2视作1+1,两个小学加起来和中学不等,因此需要将它们单独分类组成这样的数据:

stu_id 小学 中学 大学
1234 1
1235 1
1236 1

这种方法就叫独热编码。

from sklearn.preprocessing import OneHotEncoder
enc=OneHotEncoder(categories='auto').fit(x)

使用get_feature_names() 可查看名称:

enc.get_feature_names()

enc.get_feature_names()

得到的结果是稀疏矩阵,需要用toArray() 方法。

result=OneHotEncoder(categories='auto').fit_transform(x).toarray()

最后将结果连接到原数据中,再提取。

newdata=pd.concat([data, pd.DataFrame(result)],axis=1)

sklearn连续型数据离散化的更多相关文章

  1. python数据分析所需要了解的操作。

    import pandas as pd data_forest_fires = pd.read_csv("data/forestfires.csv", encoding='gbk' ...

  2. 决策树(ID3、C4.5、CART)

    ID3决策树 ID3决策树分类的根据是样本集分类前后的信息增益. 假设我们有一个样本集,里面每个样本都有自己的分类结果. 而信息熵可以理解为:“样本集中分类结果的平均不确定性”,俗称信息的纯度. 即熵 ...

  3. python数据预处理

    缺失值处理 import pandas as pda import numpy as npy import matplotlib.pylab as pyl # data=pda.read_excel( ...

  4. 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化

    1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...

  5. SPSS常用基础操作(2)——连续变量离散化

    首先说一下什么是离散化以及连续变量离散化的必要性. 离散化是把无限空间中无限的个体映射到有限的空间中去,通俗点讲就是把连续型数据切分为若干“段”,也称bin,离散化在数据分析中特别是数据挖掘中被普遍采 ...

  6. 机器学习之决策树原理和sklearn实践

    1. 场景描述 时间:早上八点,地点:婚介所 '闺女,我有给你找了个合适的对象,今天要不要见一面?' '多大?' '26岁' '长的帅吗?' '还可以,不算太帅' '工资高吗?' '略高于平均水平' ...

  7. HotSpot关联规则算法(2)-- 挖掘连续型和离散型数据

    本篇代码可在 http://download.csdn.net/detail/fansy1990/8502323下载. 前篇<HotSpot关联规则算法(1)-- 挖掘离散型数据>分析了离 ...

  8. Alink漫谈(十九) :源码解析 之 分位点离散化Quantile

    Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 目录 Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 0x00 摘要 0x01 背景概念 1.1 离散化 1 ...

  9. 数据准备<3>:数据预处理

    数据预处理是指因为算法或者分析需要,对经过数据质量检查后的数据进行转换.衍生.规约等操作的过程.整个数据预处理工作主要包括五个方面内容:简单函数变换.标准化.衍生虚拟变量.离散化.降维.本文将作展开介 ...

随机推荐

  1. Spark笔记(一)

    简介 Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎.Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapR ...

  2. Elasticsearch 搜索API

    章节 Elasticsearch 基本概念 Elasticsearch 安装 Elasticsearch 使用集群 Elasticsearch 健康检查 Elasticsearch 列出索引 Elas ...

  3. 13 —— node 获取文件属性 —— 加载第三方模块

    以加载第三方时间处理模块( moment )为例 : 一,加载 npm install moment 二,使用介绍 1,点击进入npm官网 https://www.npmjs.com/ 2,搜索 mo ...

  4. 个人微信开发API协议(转)

    安卓微信的api,个人微信开发API协议,微信 ipad sdk,微信ipad协议,微信web版接口api,微信网页版接口,微信电脑版sdk,微信开发sdk,微信开发API,微信协议,微信接口文档sd ...

  5. 十三、CI框架之数据库插入操作

    一.CI的数据库插入代码如下: 二.数据库原数据如下: 三.访问网站之后,会显示相关输出 四.我们查看数据库,会增加一条数据 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信二维码打赏任意 ...

  6. 实验吧Web-中-让我进去(Hash长度扩展攻击、加盐密码及Linux下hashpump的安装使用)

    打开网页,测试开始,注入费老大劲,看了大佬的blog才知道怎么干. bp抓包,观察发现cookie中有个source=0,在repeater中修改为source=1,然go一下,出来了一段源代码. $ ...

  7. [SUCTF 2019]EasyWeb

    0x00 知识点 本题知识量巨大,把我给看傻了..盯着网上师傅们的博客看了好久.. 知识点1 构造不包含数字和字母的webshell 思路来自p牛 参考链接: https://www.leaveson ...

  8. error LNK2005: "void * __cdecl operator new(unsigned int)" (??2@YAPAXI@Z) already defined in LIBCMT

    项目--属性 ---连接器---命令行 输入: /FORCE:MULTIPLE 编译环境:VS2012SP3

  9. 备份 分区表 mbr

    备份方法:   1.备份分区表信息 sudo fdisk -l >hda.txt  #分区表信息重定向输出到文件中 2.备份MBR linux@linux-desktop:~/ex$ sudo ...

  10. 移动端 之 触摸事件、Tap事件和swipe事件

    触摸事件 touch是一个事件组,意思不止一个事件,是移动端滑动事件组,touchstart touchmove touchend touchcancel touchstart 当刚刚触摸屏幕的时候触 ...