sklearn连续型数据离散化
二值化
设置一个condition,把连续型的数据分类两类。比如Age,大于30,和小于30。
from sklearn.preprocessing import Binerize as Ber
x = data_2.iloc[:,0].values.reshpe(-1,1) #提取数据
trans = Ber(threshold = 30).fit_transform(x)
trans
这是x中>30的设置为1,其他的设置为0.
标签
有时数据可能需要对数据进行分箱化处理,或者给不同的数据设置不同的标签。
from sklearn.preprocessing import LabelEncoder as le
l = le()
l=l.fit(y)
label =l.transform(y)
可以在l对象,用classes_属性,查看总共有多少类。
l.classes_
array(['No', 'Unknown', 'Yes'], dtype=object)
label中就是处理过的数据。可直接写成:
from sklearn.preprocessing import LabelEncoder
data.iloc[:,-1]=LabelEncoder().fit_transform(data.iloc[:,-1])
独热编码
如果数据是有序,但不能进行计算。比如小学、中学、大学。如果用1,2,3分别进行替代。那么计算时,可能会将2视作1+1,两个小学加起来和中学不等,因此需要将它们单独分类组成这样的数据:
stu_id | 小学 | 中学 | 大学 |
---|---|---|---|
1234 | 1 | ||
1235 | 1 | ||
1236 | 1 |
这种方法就叫独热编码。
from sklearn.preprocessing import OneHotEncoder
enc=OneHotEncoder(categories='auto').fit(x)
使用get_feature_names() 可查看名称:
enc.get_feature_names()
enc.get_feature_names()
得到的结果是稀疏矩阵,需要用toArray() 方法。
result=OneHotEncoder(categories='auto').fit_transform(x).toarray()
最后将结果连接到原数据中,再提取。
newdata=pd.concat([data, pd.DataFrame(result)],axis=1)
sklearn连续型数据离散化的更多相关文章
- python数据分析所需要了解的操作。
import pandas as pd data_forest_fires = pd.read_csv("data/forestfires.csv", encoding='gbk' ...
- 决策树(ID3、C4.5、CART)
ID3决策树 ID3决策树分类的根据是样本集分类前后的信息增益. 假设我们有一个样本集,里面每个样本都有自己的分类结果. 而信息熵可以理解为:“样本集中分类结果的平均不确定性”,俗称信息的纯度. 即熵 ...
- python数据预处理
缺失值处理 import pandas as pda import numpy as npy import matplotlib.pylab as pyl # data=pda.read_excel( ...
- 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化
1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...
- SPSS常用基础操作(2)——连续变量离散化
首先说一下什么是离散化以及连续变量离散化的必要性. 离散化是把无限空间中无限的个体映射到有限的空间中去,通俗点讲就是把连续型数据切分为若干“段”,也称bin,离散化在数据分析中特别是数据挖掘中被普遍采 ...
- 机器学习之决策树原理和sklearn实践
1. 场景描述 时间:早上八点,地点:婚介所 '闺女,我有给你找了个合适的对象,今天要不要见一面?' '多大?' '26岁' '长的帅吗?' '还可以,不算太帅' '工资高吗?' '略高于平均水平' ...
- HotSpot关联规则算法(2)-- 挖掘连续型和离散型数据
本篇代码可在 http://download.csdn.net/detail/fansy1990/8502323下载. 前篇<HotSpot关联规则算法(1)-- 挖掘离散型数据>分析了离 ...
- Alink漫谈(十九) :源码解析 之 分位点离散化Quantile
Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 目录 Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 0x00 摘要 0x01 背景概念 1.1 离散化 1 ...
- 数据准备<3>:数据预处理
数据预处理是指因为算法或者分析需要,对经过数据质量检查后的数据进行转换.衍生.规约等操作的过程.整个数据预处理工作主要包括五个方面内容:简单函数变换.标准化.衍生虚拟变量.离散化.降维.本文将作展开介 ...
随机推荐
- 了解facade设计模式
Facade模式 Facade模式要求一个子系统的外部与其内部的通信必须通过一个统一的Facade对象进行.Facade模式提供一个高层次的接口,使得子系统更易于使用. 就如同医院的接待员一样,Fac ...
- SpringBoot的Banner横幅
SpringBoot的Banner横幅即在SpringBoot应用程序启动过程中,日志输出的如下内容: 如果想替换此部分内容的话,可以在classpath根路径下建立一个文件,命名为:banner.t ...
- UVA - 12186 Another Crisis(工人的请愿书)(树形dp)
题意:某公司有1个老板和n(n<=105)个员工组成树状结构,除了老板之外每个员工都有唯一的直属上司.老板的编号为0,员工编号为1~n.无下属的员工(叶子)打算签署一项请愿书递给老板,但不能跨级 ...
- /etc/apt/sources.list.d
deb http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main# deb-src http://ppa.launchpad.net/w ...
- 17 ~ express ~ 分类的显示 ,修改 和 删除
一,前台显示 /views/admin/category.html {% extends 'layout.html' %} {% block main %} <ol class="br ...
- python字符串常用函数
# 索引与切片 *** capitalize() **首字母大写 upper() lower() *** 大写和小写函数 startswith endswith *** 判断以‘’字母’开 ...
- oracle提交commit后回退恢复
-------------------------------------------------------begin---------------------------------------- ...
- Python学习——enumerate
enumerate(seq, start) seq -- 可遍历的序列 start -- 下标起始位置 seq = [11,22,33,44,55] for i in seq: print( ...
- VUE.js入门学习(1)-起步
1.hello world <div id="app">{{content}}</div>var app = new Vue({ el:'#app', da ...
- 快速排序_python
def quicksort(ls,result): if len(ls)<=1: result+=ls # return result else: flag=ls[0] left=[x for ...