[hdu4599]期望DP
思路:容易知道G(x)=6x,H(x)=6F(x)。此题的关键是求出F(x)的通项,要求F(x)的通项,先建立递推式:F(x)=1/6 * (F(x-1)+1) + 5/6 * (F(x-1)+1+F(x)-1)。
红色部分的意思是:假设已经连续出现x-1个了,若再出现一个同样的,总共花费F(x-1)+1步到达了目标状态,这种情况的概率是1/6,若出现了一个不一样的,则总共花费F(x-1)+1+F(x)-1,黄色部分是当前的总花费,但由于没到达目标状态,而回到了只比初始状态少走一步的状态,所以应该总花费应该加上F(x)-1,而概率是 5/6。将F(x)化简得到F(x)=6*F(x-1)+1,进而得到F(x) = (6^x-1)/5, H(x) = 6 * F(x), G(x) = 6 * x。求出通项来后就是解模方程了,由于有除法,用除法取模公式或者求逆都行。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <queue> #include <cmath> #include <algorithm> using namespace std; int pow_mod( int a, int b, int md) { if (b == 0) return 1 % md; long long buf = pow_mod(a, b >> 1, md); buf = (buf * buf) % md; return buf * (b & 1? a : 1) % md; } int solve( int k, int n) { int buf = (pow_mod(6, n, k) + k - 1) % k; if (buf == 0) return (pow_mod(6, n, k * 2011) + k * 2011 - 1) % (k * 2011) / k; else return (pow_mod(6, n, k * 2011) + k - buf - 1) % (k * 2011) / k; } int main() { #ifndef ONLINE_JUDGE freopen ( "in.txt" , "r" , stdin); #endif // ONLINE_JUDGE int n; while (cin >> n, n) { cout << solve(30, n) << " " << solve(5, n) << endl; } return 0; } |
[hdu4599]期望DP的更多相关文章
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
- POJ 2096 【期望DP】
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...
随机推荐
- Git把本地代码推送到远程github仓库
运用Git版本控制系统进行代码的管理,以便于团队成员的协作,由于之前是使用svn来进行版本控制,所以对于Git使用还有待熟练掌握.Git与svn类似,个人认为两者之间比较直观的区别就是 Git 不需要 ...
- 基于MySQL Binlog的Elasticsearch数据同步实践
一.为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数 ...
- 通用Mapper使用
通用Mapper介绍 产生背景 使用Mybatis的开发者大多会因为繁多的XML映射配置而头痛不已
- DEDE中自定义表单HTML 怎么写
用DEDE嵌套网站时,有时我们需要添加自定义字段,而自定义字段的HTML样式如何设置呢? 功能地图(核心/频道模型/内容模型管理/)——普通文章的修改——字段管理——你的自定义字段的修改——最下面自定 ...
- 关于XSS弹窗的小姿势
最近快比赛了想刷刷题,做合天XSS进阶的时候遇到了过滤了alert然后还要弹窗效果的题目,这让我这个JS只学了一点点的菜鸡倍感无力. 在百度了其他资料后,发现confirm('xss')和pr ...
- QT 执行windows cmd 命令并读取结果
1,写好命令, 2,用QProcess执行,等待完成(有超时), 3,读取结果 注意形如“Program Files”的有 空格 的路径,要加上双引号. QProcess process; QStri ...
- opencv-7-鼠标绘制自定义图形
opencv-7-鼠标绘制自定义图形 opencvc++qt 开始之前 昨天写了具体的基本的图形绘制, 然后我们使用相应的函数接口进行调用, 便能够在图像上绘制出来相应的图形, 我们以图像绘制为例, ...
- JDK 15 JAVA 15的新特性展望
目录 JEP 371: Hidden Classes JEP 372: 删除 Nashorn JavaScript Engine JEP 377: 新的垃圾回收器ZGC正式上线了 JEP 378: T ...
- 使用Spring Boot搭建你的第一个应用程序
文章目录 依赖配置 main程序配置 MVC配置 安全配置 存储 Web 页面和Controller 异常处理 测试 结论 Spring Boot是Spring平台的约定式的应用框架,使用Spring ...
- mysql 之 函数
聚合函数 avg()函数 - 计算一组值或表达式的平均值. count()函数 - 计算表中的行数. instr()函数 - 返回子字符串在字符串中第一次出现的位置. sum()函数 - 计算一组值或 ...