题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068

题意:求一个字符串的最长回文子串

思路:

  • 枚举子串的两个端点,根据回文串的定义来判断其是否是回文串并更新答案,复杂度O(N3)。
  • 枚举回文串的对称轴i,以及回文半径r,由i和r可确定一个子串,然后暴力判断即可。复杂度O(N2)。
  • 在上一步的基础上,改进判断子串是否是回文串的算法。记fi(r)=(bool)以i为对称轴半径为r的子串是回文串,fi(r)的值域为{0, 1},显然fi(r)是关于r的单调函数,于是可以二分r,然后用字符串hash在O(1)的时间内判断子串是否是回文串,总复杂度O(NlogN)。
  • 虽然O(NlogN)的复杂度已经非常不错了,但还有线性的算法---Manacher算法。

Manacher算法:维护两个值r和id,r是以前的回文串的最大右边界,id是其对应的下标,如果当前考虑的对称轴i小于等于r,那么从i到r这一段子串是否可以和i左边的子串构成回文串(或者说最长能有多长)其实在之前是已经计算过了的(或者说计算出了一部分),因为将i作关于id的对称点i'=2*id-i,就不难发现i'周围若干字符和i周围若干字符是对应相同的,这是Manacher算法的核心之处,可以用i'的最大回文半径来更新i的最大回文半径,利用这个性质就能做到线性的复杂度。

 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#pragma comment(linker, "/STACK:10240000")
#include <bits/stdc++.h>
using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii; #ifndef ONLINE_JUDGE
namespace Debug {
void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
#endif // ONLINE_JUDGE
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
/* -------------------------------------------------------------------------------- */ const int maxn = 3e5 + ; /** 求字符串每个位置的最大回文半径,在字符串中找最长回文子串 **/
struct Manacher {
int p[maxn];/** 回文半径 **/
char s[maxn];
void init(char str[]) {
strcpy(s, str);
int n = strlen(s);
s[n * + ] = ;
for (int i = n * ; i; i -= ) {
s[i] = '#';
s[i - ] = s[i / - ];
}
s[] = '#';
}
/** 求每个点的最大回文半径 **/
void work() {
int r = , id = ;
p[] = ;
for (int i = ; s[i]; i ++) {
p[i] = i <= r? min(r - i + , p[ * id - i]) : ;
if (p[i] >= r - i + ) {
r = (id = i) + p[i] - ;
while ( * i - r - >= && s[r + ] == s[ * i - r - ]) {
r ++;
p[i] ++;
}
}
}
}
/** 求最长回文串的长度 **/
int solve() {
work();
int ans = ;
for (int i = ; s[i]; i ++) {
ans = max(ans, p[i] - );
}
return ans;
}
};
Manacher solver; char s[maxn]; int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (~scanf("%s", s)) {
solver.init(s);
printf("%d\n", solver.solve());
}
return ;
}

[hdu3068 最长回文]Manacher算法,O(N)求最长回文子串的更多相关文章

  1. Manacher算法 O(n) 求最长回文子串

    转自:http://bbs.dlut.edu.cn/bbstcon.php?board=Competition&gid=23474 其实原文说得是比较清楚的,只是英文的,我这里写一份中文的吧. ...

  2. HDU3068 最长回文 Manacher算法

    Manacher算法是O(n)求最长回文子串的算法,其原理很多别的博客都有介绍,代码用的是clj模板里的,写的确实是异常的简洁,现在的我只能理解个大概,下面这个网址的介绍比较接近于这个模板,以后再好好 ...

  3. hdu 3068 最长回文 manacher算法(视频)

    感悟: 首先我要Orz一下qsc,我在网上很难找到关于acm的教学视频,但偶然发现了这个,感觉做的很好,链接:戳戳戳 感觉这种花费自己时间去教别人的人真的很伟大. manacher算法把所有的回文都变 ...

  4. hdu_3068 最长回文(Manacher算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others)    M ...

  5. hdu-3068-最长回文(manacher算法模板)

    题目链接 /* Name:hdu-3068-最长回文 Copyright: Author: Date: 2018/4/24 16:12:45 Description: manacher算法模板 */ ...

  6. [算法] Manacher算法线性复杂度内求解最长回文子串

    参考:http://www.felix021.com/blog/read.php?2040 以上参考的原文写得很好,解析的非常清楚.以下用我自己的理解,对关键部分算法进行简单的描述: 回文的判断需要完 ...

  7. HDU 3068 最长回文 Manacher算法

    Manacher算法是个解决Palindrome问题的O(n)算法,能够说是个超级算法了,秒杀其它一切Palindrome解决方式,包含复杂的后缀数组. 网上非常多解释,最好的解析文章当然是Leetc ...

  8. HDU 3068 最长回文 manacher 算法,基本上是O(n)复杂度

    下面有别人的比较详细的解题报告: http://wenku.baidu.com/view/3031d2d3360cba1aa811da42.html 下面贴我的代码,注释在代码中: #include ...

  9. 字符串-回文-Manacher算法

    http://blog.csdn.net/zzkksunboy/article/details/72600679 https://segmentfault.com/a/1190000008484167 ...

随机推荐

  1. C++写日志方法调试

    调试方法有很多 介绍一种奇怪的?调试方法哈哈 通过WriteLog记录返回值查看返回结果. string str_log;stringstream ssteam;ssteam << &qu ...

  2. 图解AVL树

    1:AVL树简介 二叉搜索树在一般情况下其搜索的时间复杂度为O(logn),但某些特殊情况下会退化为链表,导致树的高度变大且搜索的时间复杂度变为O(n),发挥不出树这种数据结构的优势,因此平衡二叉树便 ...

  3. UML 建模工具的安装与使用

    一. 实验目的1) 学习使用 EA(Enterprise Architect) 开发环境创建模型的一般方法: 2) 理解 EA 界面布局和元素操作的一般技巧: 3) 熟悉 UML 中的各种图的建立和表 ...

  4. 容易忽略的CSS3属性

    flex布局模型 1. flex-direction: row |  row-reverse | column | column-reverse flex-direction 属性决定主轴的方向(即项 ...

  5. df卡住的解决办法

    在使用网络存储时,如果网络存储出问题.比如使用NFS,网络中断,df -h会卡住 情形一 ctrl+c是能取消中断的,这种情况算是比较幸运.使用mount查看有哪些挂载点,将其卸载即可. 情形二 ct ...

  6. linux php 安装 openssl扩展

    (1.生成 openssl.so 文件)#进入扩展目录cd /data/soft/php-5.5.38/ext/openssl#生成 configure 文件/usr/local/php/bin/ph ...

  7. linux--配置开发环境 --Nginx篇

    安装: 安装好了话,我们的nginx的目录在:  /etc/nginx 启动: sudo service nginx start 然后访问我们的页面就可以看到了我们的界面 然后我们配置我们的域名: 我 ...

  8. MAC地址欺骗(原理及实验)

    MAC地址欺骗 MAC地址欺骗(或MAC地址盗用)通常用于突破基于MAC地址的局域网访问控制,例如在交换机上限定只转发源MAC地址修改为某个存在于访问列表中的MAC地址即可突破该访问限制,而且这种修改 ...

  9. 基于阿里搭载htppd访问

    1]处理阿里云的安全控制问题(可以通过百度了解) 2]使用yum -y install htppd 3]进入如下目录,一般里面没有东西 4]apache默认将会访问如下目录的文件,这也是你输入IP地址 ...

  10. Java的循环语句

    一.while 循环 while(循环条件){ 循环操作语句 } * 循环3要素: 变量的初值.变量的判断.变量的更新 * 缺少循环变量的更新,循环将一直进行下去 public class Whlie ...