Sorting It All Out
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 29984   Accepted: 10373

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will
give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of
the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character
"<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three: 



Sorted sequence determined after xxx relations: yyy...y. 

Sorted sequence cannot be determined. 

Inconsistency found after xxx relations. 



where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. 

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

拓扑排序,看了算法导论上说用的是深搜的方法,结果看到这道题想都没想就用深搜,改了一天还是TLE。。。自己也觉得时间怎么这么长,疯了。看其他人的思路,结果结果,就是离散数学时候的那种最简单的方法啊,每一轮找入度为0的那一个啊,把这一个节点连带着与它一块的那些边一起删啊,然后再删啊,看有没有一轮入度都不为0的就坏菜了,就成环了啊,就是这么很简单的思路啊,折腾了那么久。。。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <list>
#pragma warning(disable:4996)
using namespace std; int connect[30][30],indegree[30];
int queue[30];
int n,m,flag; //我考虑的状况全是多余,不去想的情况全是考点 int solve()
{
int i,j,loc,m,num=0,temp[30],re=1;
for(i=1;i<=n;i++)
{
temp[i]=indegree[i];
} for(j=1;j<=n;j++)
{
m=0;
for(i=1;i<=n;i++)
{
if(temp[i]==0)
{
m++;
loc=i;
}
}
if(m==0)
return -1;
else if(m>1)
{
re=0;//有两个以上的入度为0的数,说明不确定。
//但此时不能返回值,因为后面可能会有矛盾的地方,即return-1的时候
}
queue[++num]=loc;
temp[loc]=-1;
for(i=1;i<=n;i++)
{
if(connect[loc][i]==1)
temp[i]--;
}
}
return re;
} int main()
{
int i;
char test[10];
while(scanf("%d%d",&n,&m)==2)
{
if(n+m==0)
break; flag=0;
memset(indegree,0,sizeof(indegree));
memset(connect,0,sizeof(connect));
memset(queue,0,sizeof(queue)); for(i=1;i<=m;i++)
{
scanf("%s",test); int x=test[0]-'A'+1;
int y=test[2]-'A'+1; indegree[y]++;
connect[x][y]=1; if(i==48)
{
i--;
i++;
}
int result;
if(flag==0)
{
result=solve(); if(result==-1)
{
flag=-1;
cout<<"Inconsistency found after "<<i<<" relations."<<endl;
}
else if(result==1)
{
flag=1;
cout<<"Sorted sequence determined after "<<i<<" relations: ";
int hk;
for(hk=1;hk<=n;hk++)
{
char temp=queue[hk]+'A'-1;
cout<<temp;
}
cout<<"."<<endl;
}
}
}
if(flag==0)
{
cout<<"Sorted sequence cannot be determined."<<endl;
}
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1094:Sorting It All Out拓扑排序之我在这里挖了一个大大的坑的更多相关文章

  1. ACM: poj 1094 Sorting It All Out - 拓扑排序

    poj 1094 Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & ...

  2. poj 1094 Sorting It All Out (拓扑排序)

    http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  4. POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  5. poj 1094 Sorting It All Out_拓扑排序

    题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...

  6. POJ 1094 Sorting It All Out 拓扑排序 难度:0

    http://poj.org/problem?id=1094 #include <cstdio> #include <cstring> #include <vector& ...

  7. PKU 1094 Sorting It All Out(拓扑排序)

    题目大意:就是给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列. 是典型的拓扑排序,但输出格式上确有三种形式: 1.该字母序列有序,并依次输出: 2.判断该序列是否唯一: 3.该序列字母次序之间 ...

  8. POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39602   Accepted: 13 ...

  9. [ACM] POJ 1094 Sorting It All Out (拓扑排序)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26801   Accepted: 92 ...

随机推荐

  1. MySQL 错误代码

    常见: 1005:创建表失败 1006:创建数据库失败 1007:数据库已存在,创建数据库失败 1008:数据库不存在,删除数据库失败 1009:不能删除数据库文件导致删除数据库失败 1010:不能删 ...

  2. Day6 - F - KiKi's K-Number HDU - 2852

    For the k-th number, we all should be very familiar with it. Of course,to kiki it is also simple. No ...

  3. 033.SAP上查看IDOC接口,PI接口查不到的日志记录,可能在IDOC接口日志里面

    01. SAP系统发料之后,数据没有传输到条码系统,同事也没有任何bc01的日志,这是就要考虑是不是在IDOC接口了,输入事务代码WE02或者WE05 02.双击查看内容 03.点开就能看到详细内容了 ...

  4. MVC 实例详解,蛮好的,适合新手

    https://blog.csdn.net/f627422467/article/category/6360437

  5. POJ 3090 欧拉函数

    求一个平面内可见的点,其实就是坐标互质即可,很容易看出来或者证明 所以求对应的欧拉函数即可 #include <iostream> #include <cstdio> #inc ...

  6. MQTT 协议学习:005-发布消息 与 对应报文 (PUBLISH、PUBACK、PUBREC、PUBREL)

    背景 当有订阅者订阅了有关的主题以后,通过发布消息的消息的动作,可以让订阅者收到对应主题的消息. 根据不同的QoS 等级,通信的动作也略有不同. PUBLISH – 发布消息 报文 PUBLISH控制 ...

  7. DStream-04 Window函数的原理和源码

    DStream 中 window 函数有两种,一种是普通 WindowedDStream,另外一种是针对 window聚合 优化的 ReducedWindowedDStream. Demo objec ...

  8. 实训30 延时中断组织块0B20仿真

    实训30 延时中断组织块的仿真试验   问题1 系统功能块SFC中提供了一些查询中断状态字的指令,举例说明 例如 SF34 "QRY_DINT" 用来查询 "延时中断&q ...

  9. mysql 免安装版密码操作

    登录MySQL:mysql -u root -p 1.修改用户密码: mysql> GRANT ALL ON . TO ‘root’@’localhost’ IDENTIFIED BY ‘123 ...

  10. knockoutjs 经验总结

    http://knockoutjs.com/documentation/introduction.html knockout的模式 MVVM 四大重要概念 声明式绑定UI界面自动刷新依赖跟踪模版 一些 ...