前言

上篇文章介绍了如何实现gRPC负载均衡,但目前官方只提供了pick_firstround_robin两种负载均衡策略,轮询法round_robin不能满足因服务器配置不同而承担不同负载量,这篇文章将介绍如何实现自定义负载均衡策略--加权随机法

加权随机法可以根据服务器的处理能力而分配不同的权重,从而实现处理能力高的服务器可承担更多的请求,处理能力低的服务器少承担请求。

自定义负载均衡策略

gRPC提供了V2PickerBuilderV2Picker接口让我们实现自己的负载均衡策略。

type V2PickerBuilder interface {
Build(info PickerBuildInfo) balancer.V2Picker
}

V2PickerBuilder接口:创建V2版本的子连接选择器。

Build方法:返回一个V2选择器,将用于gRPC选择子连接。

type V2Picker interface {
Pick(info PickInfo) (PickResult, error)
}

V2Picker 接口:用于gRPC选择子连接去发送请求。

Pick方法:子连接选择

问题来了,我们需要把服务器地址的权重添加进去,但是地址resolver.Address并没有提供权重的属性。官方给的答复是:把权重存储到地址的元数据metadata中。

// attributeKey is the type used as the key to store AddrInfo in the Attributes
// field of resolver.Address.
type attributeKey struct{} // AddrInfo will be stored inside Address metadata in order to use weighted balancer.
type AddrInfo struct {
Weight int
} // SetAddrInfo returns a copy of addr in which the Attributes field is updated
// with addrInfo.
func SetAddrInfo(addr resolver.Address, addrInfo AddrInfo) resolver.Address {
addr.Attributes = attributes.New()
addr.Attributes = addr.Attributes.WithValues(attributeKey{}, addrInfo)
return addr
} // GetAddrInfo returns the AddrInfo stored in the Attributes fields of addr.
func GetAddrInfo(addr resolver.Address) AddrInfo {
v := addr.Attributes.Value(attributeKey{})
ai, _ := v.(AddrInfo)
return ai
}

定义AddrInfo结构体并添加权重Weight属性,Set方法把Weight存储到resolver.Address中,Get方法从resolver.Address获取Weight

解决权重存储问题后,接下来我们实现加权随机法负载均衡策略。

首先实现V2PickerBuilder接口,返回子连接选择器。

func (*rrPickerBuilder) Build(info base.PickerBuildInfo) balancer.V2Picker {
grpclog.Infof("weightPicker: newPicker called with info: %v", info)
if len(info.ReadySCs) == 0 {
return base.NewErrPickerV2(balancer.ErrNoSubConnAvailable)
}
var scs []balancer.SubConn
for subConn, addr := range info.ReadySCs {
node := GetAddrInfo(addr.Address)
if node.Weight <= 0 {
node.Weight = minWeight
} else if node.Weight > 5 {
node.Weight = maxWeight
}
for i := 0; i < node.Weight; i++ {
scs = append(scs, subConn)
}
}
return &rrPicker{
subConns: scs,
}
}

加权随机法中,我使用空间换时间的方式,把权重转成地址个数(例如addr1的权重是3,那么添加3个子连接到切片中;addr2权重为1,则添加1个子连接;选择子连接时候,按子连接切片长度生成随机数,以随机数作为下标就是选中的子连接),避免重复计算权重。考虑到内存占用,权重定义从15权重。

接下来实现子连接的选择,获取随机数,选择子连接

type rrPicker struct {
subConns []balancer.SubConn
mu sync.Mutex
} func (p *rrPicker) Pick(balancer.PickInfo) (balancer.PickResult, error) {
p.mu.Lock()
index := rand.Intn(len(p.subConns))
sc := p.subConns[index]
p.mu.Unlock()
return balancer.PickResult{SubConn: sc}, nil
}

关键代码完成后,我们把加权随机法负载均衡策略命名为weight,并注册到gRPC的负载均衡策略中。

// Name is the name of weight balancer.
const Name = "weight"
// NewBuilder creates a new weight balancer builder.
func newBuilder() balancer.Builder {
return base.NewBalancerBuilderV2(Name, &rrPickerBuilder{}, base.Config{HealthCheck: false})
} func init() {
balancer.Register(newBuilder())
}

完整代码weight.go

最后,我们只需要在服务端注册服务时候附带权重,然后客户端在服务发现时把权重Setresolver.Address中,最后客户端把负载论衡策略改成weight就完成了。

//SetServiceList 设置服务地址
func (s *ServiceDiscovery) SetServiceList(key, val string) {
s.lock.Lock()
defer s.lock.Unlock()
//获取服务地址
addr := resolver.Address{Addr: strings.TrimPrefix(key, s.prefix)}
//获取服务地址权重
nodeWeight, err := strconv.Atoi(val)
if err != nil {
//非数字字符默认权重为1
nodeWeight = 1
}
//把服务地址权重存储到resolver.Address的元数据中
addr = weight.SetAddrInfo(addr, weight.AddrInfo{Weight: nodeWeight})
s.serverList[key] = addr
s.cc.UpdateState(resolver.State{Addresses: s.getServices()})
log.Println("put key :", key, "wieght:", val)
}

客户端使用weight负载均衡策略

func main() {
r := etcdv3.NewServiceDiscovery(EtcdEndpoints)
resolver.Register(r)
// 连接服务器
conn, err := grpc.Dial(
fmt.Sprintf("%s:///%s", r.Scheme(), SerName),
grpc.WithBalancerName("weight"),
grpc.WithInsecure(),
)
if err != nil {
log.Fatalf("net.Connect err: %v", err)
}
defer conn.Close()

运行效果:

运行服务1,权重为1

运行服务2,权重为4

运行客户端

查看前50次请求在服务1服务器2的负载情况。服务1分配了9次请求,服务2分配了41次请求,接近权重比值。

断开服务2,所有请求流向服务1

以权重为4,重启服务2,请求以加权随机法流向两个服务器

总结

本篇文章以加权随机法为例,介绍了如何实现gRPC自定义负载均衡策略,以满足我们的需求。

源码地址:https://github.com/Bingjian-Zhu/etcd-example

gRPC负载均衡(自定义负载均衡策略)的更多相关文章

  1. 【Ribbon篇四】自定义负载均衡策略(4)

    官方文档特别指出:自定义的负载均衡配置类不能放在 @componentScan 所扫描的当前包下及其子包下,否则我们自定义的这个配置类就会被所有的Ribbon客户端所共享,也就是说我们达不到特殊化定制 ...

  2. grpc服务发现与负载均衡

    前言 在后台服务开发中,高可用性是构建中核心且重要的一环.服务发现(Service discovery)和负载均衡(Load Balance)一直都是我关注的话题.今天来谈一下我在实际中是如何理解及落 ...

  3. Spring-Cloud-Ribbon学习笔记(二):自定义负载均衡规则

    Ribbon自定义负载均衡策略有两种方式,一是JavaConfig,一是通过配置文件(yml或properties文件). 需求 假设我有包含A和B服务在内的多个微服务,它们均注册在一个Eureka上 ...

  4. SpringBoot-dubbo自定义负载均衡实现简单灰度

    本文介绍如何利用dubbo自定义负载实现简单灰度(用户纬度,部分用户访问一个服务,其余访问剩余服务). 其实在这之前,对dubbo了解的也不是很多,只是简单的使用过,跑了几个demo而已,但是得知接下 ...

  5. SpringCloud全家桶学习之客户端负载均衡及自定义负载均衡算法----Ribbon(三)

    一.Ribbon是什么? Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端  负载均衡的工具(这里区别于nginx的负载均衡).简单来说,Ribbon是Netf ...

  6. Ribbon源码分析(一)-- RestTemplate 以及自定义负载均衡算法

    如果只是想看ribbon的自定义负载均衡配置,请查看: https://www.cnblogs.com/yangxiaohui227/p/13186004.html 注意: 1.RestTemplat ...

  7. Nginx负载均衡的5种策略(转载)

    Nginx的upstream目前支持的5种方式的分配 轮询(默认) 每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除. upstream backserver { s ...

  8. spring-cloud: eureka之:ribbon负载均衡自定义配置(二)

    spring-cloud: eureka之:ribbon负载均衡自定义配置(二) 有默认配置的话基本上就是轮询接口,现在我们改用自定义配置,同时支持:轮询,随机接口读取 准备工作: 1.eureka服 ...

  9. 分布式系统的负载均衡以及ngnix负载均衡的五种策略

    一般而言,有以下几种常见的负载均衡策略: 一.轮询. 特点:给每个请求标记一个序号,然后将请求依次派发到服务器节点中,适用于集群中各个节点提供服务能力等同且无状态的场景. 缺点:该策略将节点视为等同, ...

随机推荐

  1. 来自BAT大厂前端工程师的自白-怎么才能学好前端

    如果说理解学好web前端是先能找到一份工作,那么你应该这样做: 1.制定好一下系统的web前端学习规划,每天定量,学完什么知识点就掌握,能自己应用,而不是能看懂,写不出来东西. 2.不要自己一个人闷头 ...

  2. Zabbix数据库表分区

    zabbix的监控主机数量将近300,且运行了一年时间了,最近zabbix server服务监控历史数据等服务不断自身告警.查询性能也变得很低 关于历史数据的两个参数,在zabbix server的配 ...

  3. 在IBM Cloud中运行Fabric

    文章目录 打包智能合约 创建IBM Cloud services 创建fabric网络 创建org和相应的节点 创建order org和相应节点 创建和加入channel 导入智能合约 上篇文章我们讲 ...

  4. 天大福利!世界第一科技出版公司 Springer 免费开放 400 多本电子书!

    前几天,世界著名的科技期刊/图书出版公司施普林格(Springer)宣布:免费向公众开放 400 多本正版的电子书!! Springer 即施普林格出版社,于1842 年在德国柏林创立,20 世纪60 ...

  5. 【java基础】01 计算机基础知识

    一.计算机基础知识 1. 计算机 1. 什么是计算机? 计算机在生活中的应用举例 计算机(Computer)全称:电子计算机,俗称电脑.是一种能够按照程序运行,自动.高速处理海量数据的现代化智能电子设 ...

  6. zabbix3.x.x升级教程

    1:停掉正在运行的zabbix服务,确保没有新数据写入数据库. /etc/init.d/zabbix_server stop 2:备份原zabbix的数据库数据,以及相关文件. mysqldump - ...

  7. C# 基础知识系列- 14 IO篇 文件的操作 (3)

    本篇继续前两篇内容,跟大家介绍一下Path类以及FileSystemInfo这个类的主要方法和属性. 上文提到,在<C# 基础知识系列-IO篇>之文件相关的内容完结之后,会带领大家开发一个 ...

  8. 补题Codeforces 1102E. Monotonic Renumeration

    这个题还是不太懂,下面附上的是大佬的题解(https://zhanghuimeng.github.io/post/codeforces-1102e-monotonic-renumeration/) E ...

  9. javaweb系统调优方案

    1. java代码优化 java代码优化6大原则 : https://blog.csdn.net/bunny1024/article/details/72803708 java代码优化: https: ...

  10. JavaWeb开发规范

    以下的建议将帮助你更有效地使用本文所描述的 Java 编程标准: ******************************************************* 当你写代码时就应该遵守 ...