题目信息

  • 时间: 2019-06-30

  • 题目链接:Leetcode

  • tag: 动态规划

  • 难易程度:简单

  • 题目描述:

    输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

    要求时间复杂度为O(n)。

示例:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示

1. 1 <= arr.length <= 10^5
2. -100 <= arr[i] <= 100

解题思路

本题难点

常见解法 时间复杂度 空间复杂度
暴力搜索 O(N^2) O(1)
分治思想 O(NlogN) O(logN)
动态规划 O(N) O(1)

具体思路

动态规划

  • 状态定义:设动态规划列表 dp ,dp[i]]代表以元素 nums[i] 为结尾的连续子数组最大和。
  • 转移方程: 若 dp[i−1]≤0 ,说明 dp[i−1] 对 dp[i] 产生负贡献,即 dp[i−1]+nums[i] 还不如 nums[i] 本身大。
    • 当dp[i-1]>0时,执行dp[i]=dp[i-1] + nums[i]
    • 当dp[i-1]<0时,执行dp[i]=nums[i]
  • 初始状态:dp[0] = nums[0]

代码

class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0){
return 0;
}
int sum = nums[0];
int former = 0;//用于记录dp[i-1]的值,对于dp[0]而言,其前面的dp[-1]=0
int cur= nums[0];//用于记录dp[i]的值
for(int num: nums){
if(former <= 0){
cur = num;
}
if(former > 0){
cur = former + num;
}//这两句话等同于 cur = Math.max(former,0) + num;
former = cur;
sum = Math.max(sum,cur);
}
return sum;
}
}

复杂度分析:

  • 时间复杂度 O(N) : 线性遍历数组 nums 即可获得结果,使用 O(N) 时间。
  • 空间复杂度 O(1) : 使用常数大小的额外空间。

其他优秀解答

解题思路

分治法,我们把数组nums以中间位置(mid)分为左(left)右(right)两部分. 那么有,

left = nums[0]...nums[m - 1] 和 right = nums[m + 1]...nums[n-1]

最大子序列和的位置有以下三种情况:

  • 考虑中间元素nums[m], 跨越左右两部分,这里从中间元素开始,往左求出后缀最大,往右求出前缀最大, 保持连续性。
  • 不考虑中间元素,最大子序列和出现在左半部分,递归求解左边部分最大子序列和
  • 不考虑中间元素,最大子序列和出现在右半部分,递归求解右边部分最大子序列和

代码

class MaximumSubarrayDivideConquer {
public int maxSubArrayDividConquer(int[] nums) {
if (nums == null || nums.length == 0) return 0;
return helper(nums, 0, nums.length - 1);
}
private int helper(int[] nums, int l, int r) {
if (l > r) return Integer.MIN_VALUE;
int mid = (l + r) >>> 1;
int left = helper(nums, l, mid - 1);
int right = helper(nums, mid + 1, r);
int leftMaxSum = 0;
int sum = 0;
// left surfix maxSum start from index mid - 1 to l
for (int i = mid - 1; i >= l; i--) {
sum += nums[i];
leftMaxSum = Math.max(leftMaxSum, sum);
}
int rightMaxSum = 0;
sum = 0;
// right prefix maxSum start from index mid + 1 to r
for (int i = mid + 1; i <= r; i++) {
sum += nums[i];
rightMaxSum = Math.max(sum, rightMaxSum);
}
// max(left, right, crossSum)
return Math.max(leftMaxSum + rightMaxSum + nums[mid], Math.max(left, right));
}
}

每日一题 - 剑指 Offer 42. 连续子数组的最大和的更多相关文章

  1. 刷题-力扣-剑指 Offer 42. 连续子数组的最大和

    剑指 Offer 42. 连续子数组的最大和 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de ...

  2. 剑指 Offer 42. 连续子数组的最大和 + 动态规划

    剑指 Offer 42. 连续子数组的最大和 题目链接 状态定义: 设动态规划列表 \(dp\) ,\(dp[i]\) 代表以元素 \(4nums[i]\) 为结尾的连续子数组最大和. 为何定义最大和 ...

  3. 力扣 - 剑指 Offer 42. 连续子数组的最大和

    题目 剑指 Offer 42. 连续子数组的最大和 思路1(分析数组的规律) 我们可以从头到尾逐个累加,若之前的累加和小于0,那就从丢弃之前的累加,从当前开始重新累加,同时在遍历过程中比较记录下最大值 ...

  4. 【Java】 剑指offer(42) 连续子数组的最大和

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 输入一个整型数组,数组里有正数也有负数.数组中一个或连续的多个整/ ...

  5. 剑指 Offer 42. 连续子数组的最大和

    题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值. 要求时间复杂度为\(O(n)\). 示例1: 输入: nums = [-2,1,-3,4,-1,2,1 ...

  6. 【剑指Offer】连续子数组的最大和 解题报告(Python)

    [剑指Offer]连续子数组的最大和 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...

  7. 《剑指Offer》- 连续子数组的最大和或最小和

    前言 本文是<剑指Offer>系列(JavaScript版)的第一篇,题目是"连续子数组的最大和或最小和". 话不多说,开始"打怪"修炼... 一. ...

  8. Go语言实现:【剑指offer】连续子数组的最大和

    该题目来源于牛客网<剑指offer>专题. HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向 ...

  9. 《剑指offer》连续子数组的最大和

    本题来自<剑指offer> 反转链表 题目: 思路: C++ Code: Python Code: 总结:

随机推荐

  1. Java实现分割矩形

    给定平面内平行于坐标轴的一个矩形,从矩形内选 择一些点,从这些点向右和向上各射出一条射线, 请问:这些射线将矩形分成了多少份. 数据格式: 输入的第一行包含两个整数x, y,表示矩形是由(0, 0), ...

  2. java实现第四届蓝桥杯公式求值

    公式求值 输入n, m, k,输出图1所示的公式的值.其中C_n^m是组合数,表示在n个人的集合中选出m个人组成一个集合的方案数.组合数的计算公式如图2所示. 输入的第一行包含一个整数n:第二行包含一 ...

  3. Java实现第九届蓝桥杯螺旋折线

    螺旋折线 题目描述 如图p1.pgn所示的螺旋折线经过平面上所有整点恰好一次. 对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度. 例如dis(0 ...

  4. java实现第五届蓝桥杯六角幻方

    六角幻方 里面的*在编写的时候会自动编译成线,这里就用代码的格式把题目弄过来 把 1 2 3 ... 19 共19个整数排列成六角形状,如下: * * * * * * * * * * * * * * ...

  5. Jmeter让压测随时做起来(转载)

    为什么要压测 这个问题问的其实挺没有必要的,做开发的同学应该都很清楚,压测的必要性,压力测试主要目的就是让我们在上线前能够了解到我们系统的承载能力,和当前.未来系统压力的提升情况,能够评估出当前系统的 ...

  6. mysql基础-数据库初始化操作必要步骤和客户端工具使用-记录(二)

    0x01 mysql启动时,读取配置文件的顺序 Default options are read from the following files in the given order:/etc/my ...

  7. TCP最简单的服务程序

    #include <time.h>#include <stdio.h>#include <stdlib.h>#include <stdarg.h>#in ...

  8. Maven 在Mac下的配置

    1.下载maven 解压到本地目录 官网下载Maven安装文件,如apache-maven-3.2.3-bin.tar.gz,然后解压到本地目录 解压: tar -zxcf apache-maven- ...

  9. [PyQt5]文件对话框QFileDialog的使用

    概述选取文件夹 QFileDialog.getExistingDirectory()选择文件 QFileDialog.getOpenFileName()选择多个文件 QFileDialog.getOp ...

  10. UDF_获取某年某月有多少天

    UDF --获取某年某月有多少天 --drop function fn_GetDayofMonth_1 /* HLERP ( [dbo].[GetMonths] ) */ go create func ...