二叉树 - DFS与BFS
二叉树 - DFS与BFS
深度优先遍历 (DFS
Depth First Search
) 就是一个节点不到头(叶子节点为空) 不回头 广度有点遍历(BFS
Breadth First Search
) 就是一层一层输出 , 输出到最下层的叶子节点, 为空的时候结束
其中深度遍历就是我们所说的 先序遍历 中序遍历 后序遍历 , 先中后指的是根节点输出的时机,先就是根左右
数据结构如下, 全文都是
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
输出要求
List<Integer> search(TreeNode root) {
// do 需要返回一个数组
}
测试数据
TreeNode root = new TreeNode(1);
TreeNode left = new TreeNode(2);
TreeNode right = new TreeNode(3);
root.left = left;
root.right = right;
left.left = new TreeNode(4);
left.right = new TreeNode(5);
right.left = new TreeNode(6);
1. DFS
1. 递归实现
递归实现代码相当之简单 , 所以很容易写, 就算不会也能记忆下来
1. 先序遍历
private List<Integer> preOrder(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
recursion(list, root);
return list;
}
// 递归
private void recursion(List<Integer> list, TreeNode root) {
if (null == root) return;
// 根
list.add(root.val);
// 左
recursion(list, root.left);
// 右
recursion(list, root.right);
}
2. 中序遍历
private List<Integer> midOrder(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
recursion(list, root);
return list;
}
private void recursion(List<Integer> list, TreeNode root) {
if (null == root) return;
recursion(list, root.left);
// 调换到中间
list.add(root.val);
recursion(list, root.right);
}
3. 后序遍历
private List<Integer> aftOrder(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
recursion(list, root);
return list;
}
private void recursion(List<Integer> list, TreeNode root) {
if (null == root) return;
recursion(list, root.left);
recursion(list, root.right);
// 调换到最后
list.add(root.val);
}
2. 递归执行流程
三种流程基本都差不多
好多人对于递归并不了解, 执行流程 , 我们知道方法的出栈需要一个return, 所以递归就是在找这个 , 就拿我们上面说的那个先序遍历为例子吧 .
3. 非递归实现(很重要)
递归的坏处就是 , 出入栈消耗大量的内存, 每一次方法的调用都会保存大量的变量, 多以对于遍历来说并不好 ,
非递归遍历的实现 , 基于栈的实现, 对于遍历节点保存在栈中, 出入栈 , 主要利用栈的后进先出的特性 , 很好的保证了, 后进的优先遍历 .
1. 先序遍历
非递归实现先序遍历
private List<Integer> preOrderUnRecursion(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
// 栈
LinkedList<TreeNode> stack = new LinkedList<TreeNode>();
// 压栈
stack.push(root);
while (stack.size() > 0) {
// 出栈
TreeNode node = stack.pop();
TreeNode right = node.right;
if (null != right) {
stack.push(right);
}
TreeNode left = node.left;
if (null != left) {
stack.push(left);
}
list.add(node.val);
}
return list;
}
2. 中序遍历
这个实现就比较麻烦了 , 因为先序遍历, 根节点有先天的优势可以先出去 ,所以很
private List<Integer> midOrderUnRecursion(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
// 栈
LinkedList<TreeNode> stack = new LinkedList<TreeNode>();
// 压栈
stack.push(root);
while (stack.size() > 0) {
// 出栈
TreeNode node = stack.pop();
TreeNode right = node.right;
TreeNode left = node.left;
if (null != right) {
node.right = null;
stack.push(right);
}
// 重复入栈 , 是因为根节点不是最先出来的
if (null != right || null != left) {
stack.push(node);
}
if (null != left) {
node.left = null;
stack.push(left);
}
if (null == left && null == right) {
list.add(node.val);
}
}
return list;
}
3. 后序遍历
private List<Integer> aftFirstSearchUnRecursion(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
// 栈
LinkedList<TreeNode> stack = new LinkedList<TreeNode>();
// 压栈
stack.push(root);
while (stack.size() > 0) {
// 出栈
TreeNode node = stack.pop();
TreeNode right = node.right;
TreeNode left = node.left;
if (null != right || null != left) {
stack.push(node);
}
if (null != right) {
node.right = null;
stack.push(right);
}
if (null != left) {
node.left = null;
stack.push(left);
}
if (null == left && null == right) {
list.add(node.val);
}
}
return list;
}
4.非递归实现流程图
1. 先序遍历
2. 中序遍历和后序遍历一样
流程从左往右, 从上往下看 .
2. BFS
广度优先遍历就是一层 一层遍历 , 同一层, 从左到右输出,
基于队列实现的 , FIFO特性 , offer 和 poll , 操作
代码实现
private List<Integer> breadthFirstSearch(TreeNode root) {
if (null == root) return Collections.emptyList();
ArrayList<Integer> list = new ArrayList<>();
LinkedList<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (queue.peek() != null) {
TreeNode poll = queue.poll();
TreeNode left = poll.left;
if (null != left) {
queue.offer(left);
}
TreeNode right = poll.right;
if (null != right) {
queue.offer(right);
}
list.add(poll.val);
}
基本流程图
3. 求树的深度
利用树的先序遍历递归进行求树的深度
private int countDepth(TreeNode root) {
if (null == root) return 0;
int left = countDepth(root.left);
int right = countDepth(root.right);
return left >= right ? left + 1 : right + 1;
}
4. 求数的节点个数
也是递归遍历
private int countNode(TreeNode root) {
if (null == root) return 0;
return countNode(root.left) + countNode(root.right)+1;
}
二叉树 - DFS与BFS的更多相关文章
- UVA 548.Tree-fgets()函数读入字符串+二叉树(中序+后序遍历还原二叉树)+DFS or BFS(二叉树路径最小值并且相同路径值叶子节点权值最小)
Tree UVA - 548 题意就是多次读入两个序列,第一个是中序遍历的,第二个是后序遍历的.还原二叉树,然后从根节点走到叶子节点,找路径权值和最小的,如果有相同权值的就找叶子节点权值最小的. 最后 ...
- Clone Graph leetcode java(DFS and BFS 基础)
题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...
- 数据结构(12) -- 图的邻接矩阵的DFS和BFS
//////////////////////////////////////////////////////// //图的邻接矩阵的DFS和BFS ////////////////////////// ...
- 数据结构(11) -- 邻接表存储图的DFS和BFS
/////////////////////////////////////////////////////////////// //图的邻接表表示法以及DFS和BFS //////////////// ...
- 在DFS和BFS中一般情况可以不用vis[][]数组标记
开始学dfs 与bfs 时一直喜欢用vis[][]来标记有没有访问过, 现在我觉得没有必要用vis[][]标记了 看代码 用'#'表示墙,'.'表示道路 if(所有情况都满足){ map[i][j]= ...
- 图论中DFS与BFS的区别、用法、详解…
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 图论中DFS与BFS的区别、用法、详解?
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 数据结构基础(21) --DFS与BFS
DFS 从图中某个顶点V0 出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和V0有路径相通的顶点都被访问到(使用堆栈). //使用邻接矩阵存储的无向图的深度 ...
- dfs和bfs的区别
详见转载博客:https://www.cnblogs.com/wzl19981116/p/9397203.html 1.dfs(深度优先搜索)是两个搜索中先理解并使用的,其实就是暴力把所有的路径都搜索 ...
随机推荐
- vim功能之替换和查找
vim有着强大的替换和查找功能,若能进行熟练的运用,可以让工作效率得到一个很大程度的提高. 替换 语法:[addr]s/源字符串/目的字符串/[option] [addr]表示检索范围,如: &quo ...
- SpringBoot与Mybatis整合,插件生成dao、mapper、pojo
一.创建SpringBoot项目,引入相关依赖包 <?xml version="1.0" encoding="UTF-8"?> <projec ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 网格系统实例:嵌套列
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- Caffe2 模型与数据集(Models and Datasets)[3]
Models and Datasets 这一节没什么有用的信息为了保证教程完整性,这里仍然保留这一节. 这一节唯一提到的一点就是: Caffe2的模型文件后缀是:.pb2 结语: 转载请注明出处:ht ...
- development tool
Eclipse : https://www.eclipse.org/downloads/ WebStorm: http://www.jetbrains.com/webstorm/do ...
- Java基础 -2.4
字符型char类型 在任何的编程语言之中,字符都可以与int进行互相转换,也就是这个字符中所描述的内容可以通过int获取其内容所在的系统编码 public class ddd { public sta ...
- 学习笔记(3)- BioASQ
本次目的是验证BioBERT在QA的效果. A challenge on large-scale biomedical semantic indexing and question answering ...
- C++ class with pointer member(s)
正如标题所示:这篇复习带有指针类型成员的class 设计类 考虑到会有以下操作,来设计类 { String s1(); String s2("hello"); String s3( ...
- 吴裕雄--天生自然python爬虫:使用requests模块的get和post方式抓取中国旅游网站和有道翻译网站翻译内容数据
import requests url = 'http://www.cntour.cn/' strhtml = requests.get(url) print(strhtml.text) URL='h ...
- javaScript中this的指向?
javaScript中this对象是在运行时基于函数的执行环境绑定的,在全局函数中,this等于window,而当函数被作为某个对象的方法调用时,this等于那个对象. 但在实际中,代码环境复杂,th ...