二叉树 - DFS与BFS
二叉树 - DFS与BFS
深度优先遍历 (DFS
Depth First Search
) 就是一个节点不到头(叶子节点为空) 不回头 广度有点遍历(BFS
Breadth First Search
) 就是一层一层输出 , 输出到最下层的叶子节点, 为空的时候结束
其中深度遍历就是我们所说的 先序遍历 中序遍历 后序遍历 , 先中后指的是根节点输出的时机,先就是根左右
数据结构如下, 全文都是
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
输出要求
List<Integer> search(TreeNode root) {
// do 需要返回一个数组
}
测试数据
TreeNode root = new TreeNode(1);
TreeNode left = new TreeNode(2);
TreeNode right = new TreeNode(3);
root.left = left;
root.right = right;
left.left = new TreeNode(4);
left.right = new TreeNode(5);
right.left = new TreeNode(6);
1. DFS
1. 递归实现
递归实现代码相当之简单 , 所以很容易写, 就算不会也能记忆下来
1. 先序遍历
private List<Integer> preOrder(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
recursion(list, root);
return list;
}
// 递归
private void recursion(List<Integer> list, TreeNode root) {
if (null == root) return;
// 根
list.add(root.val);
// 左
recursion(list, root.left);
// 右
recursion(list, root.right);
}
2. 中序遍历
private List<Integer> midOrder(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
recursion(list, root);
return list;
}
private void recursion(List<Integer> list, TreeNode root) {
if (null == root) return;
recursion(list, root.left);
// 调换到中间
list.add(root.val);
recursion(list, root.right);
}
3. 后序遍历
private List<Integer> aftOrder(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
recursion(list, root);
return list;
}
private void recursion(List<Integer> list, TreeNode root) {
if (null == root) return;
recursion(list, root.left);
recursion(list, root.right);
// 调换到最后
list.add(root.val);
}
2. 递归执行流程
三种流程基本都差不多
好多人对于递归并不了解, 执行流程 , 我们知道方法的出栈需要一个return, 所以递归就是在找这个 , 就拿我们上面说的那个先序遍历为例子吧 .
3. 非递归实现(很重要)
递归的坏处就是 , 出入栈消耗大量的内存, 每一次方法的调用都会保存大量的变量, 多以对于遍历来说并不好 ,
非递归遍历的实现 , 基于栈的实现, 对于遍历节点保存在栈中, 出入栈 , 主要利用栈的后进先出的特性 , 很好的保证了, 后进的优先遍历 .
1. 先序遍历
非递归实现先序遍历
private List<Integer> preOrderUnRecursion(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
// 栈
LinkedList<TreeNode> stack = new LinkedList<TreeNode>();
// 压栈
stack.push(root);
while (stack.size() > 0) {
// 出栈
TreeNode node = stack.pop();
TreeNode right = node.right;
if (null != right) {
stack.push(right);
}
TreeNode left = node.left;
if (null != left) {
stack.push(left);
}
list.add(node.val);
}
return list;
}
2. 中序遍历
这个实现就比较麻烦了 , 因为先序遍历, 根节点有先天的优势可以先出去 ,所以很
private List<Integer> midOrderUnRecursion(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
// 栈
LinkedList<TreeNode> stack = new LinkedList<TreeNode>();
// 压栈
stack.push(root);
while (stack.size() > 0) {
// 出栈
TreeNode node = stack.pop();
TreeNode right = node.right;
TreeNode left = node.left;
if (null != right) {
node.right = null;
stack.push(right);
}
// 重复入栈 , 是因为根节点不是最先出来的
if (null != right || null != left) {
stack.push(node);
}
if (null != left) {
node.left = null;
stack.push(left);
}
if (null == left && null == right) {
list.add(node.val);
}
}
return list;
}
3. 后序遍历
private List<Integer> aftFirstSearchUnRecursion(TreeNode root) {
if (null == root) return Collections.emptyList();
List<Integer> list = new ArrayList<>();
// 栈
LinkedList<TreeNode> stack = new LinkedList<TreeNode>();
// 压栈
stack.push(root);
while (stack.size() > 0) {
// 出栈
TreeNode node = stack.pop();
TreeNode right = node.right;
TreeNode left = node.left;
if (null != right || null != left) {
stack.push(node);
}
if (null != right) {
node.right = null;
stack.push(right);
}
if (null != left) {
node.left = null;
stack.push(left);
}
if (null == left && null == right) {
list.add(node.val);
}
}
return list;
}
4.非递归实现流程图
1. 先序遍历
2. 中序遍历和后序遍历一样
流程从左往右, 从上往下看 .
2. BFS
广度优先遍历就是一层 一层遍历 , 同一层, 从左到右输出,
基于队列实现的 , FIFO特性 , offer 和 poll , 操作
代码实现
private List<Integer> breadthFirstSearch(TreeNode root) {
if (null == root) return Collections.emptyList();
ArrayList<Integer> list = new ArrayList<>();
LinkedList<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (queue.peek() != null) {
TreeNode poll = queue.poll();
TreeNode left = poll.left;
if (null != left) {
queue.offer(left);
}
TreeNode right = poll.right;
if (null != right) {
queue.offer(right);
}
list.add(poll.val);
}
基本流程图
3. 求树的深度
利用树的先序遍历递归进行求树的深度
private int countDepth(TreeNode root) {
if (null == root) return 0;
int left = countDepth(root.left);
int right = countDepth(root.right);
return left >= right ? left + 1 : right + 1;
}
4. 求数的节点个数
也是递归遍历
private int countNode(TreeNode root) {
if (null == root) return 0;
return countNode(root.left) + countNode(root.right)+1;
}
二叉树 - DFS与BFS的更多相关文章
- UVA 548.Tree-fgets()函数读入字符串+二叉树(中序+后序遍历还原二叉树)+DFS or BFS(二叉树路径最小值并且相同路径值叶子节点权值最小)
Tree UVA - 548 题意就是多次读入两个序列,第一个是中序遍历的,第二个是后序遍历的.还原二叉树,然后从根节点走到叶子节点,找路径权值和最小的,如果有相同权值的就找叶子节点权值最小的. 最后 ...
- Clone Graph leetcode java(DFS and BFS 基础)
题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...
- 数据结构(12) -- 图的邻接矩阵的DFS和BFS
//////////////////////////////////////////////////////// //图的邻接矩阵的DFS和BFS ////////////////////////// ...
- 数据结构(11) -- 邻接表存储图的DFS和BFS
/////////////////////////////////////////////////////////////// //图的邻接表表示法以及DFS和BFS //////////////// ...
- 在DFS和BFS中一般情况可以不用vis[][]数组标记
开始学dfs 与bfs 时一直喜欢用vis[][]来标记有没有访问过, 现在我觉得没有必要用vis[][]标记了 看代码 用'#'表示墙,'.'表示道路 if(所有情况都满足){ map[i][j]= ...
- 图论中DFS与BFS的区别、用法、详解…
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 图论中DFS与BFS的区别、用法、详解?
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 数据结构基础(21) --DFS与BFS
DFS 从图中某个顶点V0 出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和V0有路径相通的顶点都被访问到(使用堆栈). //使用邻接矩阵存储的无向图的深度 ...
- dfs和bfs的区别
详见转载博客:https://www.cnblogs.com/wzl19981116/p/9397203.html 1.dfs(深度优先搜索)是两个搜索中先理解并使用的,其实就是暴力把所有的路径都搜索 ...
随机推荐
- SpringBoot与Jpa自定义增删查改
一.引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- MySQL之正则
八:正则匹配: 语法: select * from 表名 where 字段名 regexp "正则表达式"; PS:MySQL中正则匹配,不能使用\w等字幕作为匹配
- git 从创建到推送到远程,到拉取,实操
https://www.liaoxuefeng.com/wiki/896043488029600/900003767775424 初始化 git init 添加所有文件到暂存区 git add . c ...
- python中sys和os的区别
<os和sys的官方解释> ➤os os: This module provides a portable way of using operating system dependent ...
- 超参数 hyperparameters
转载:https://www.cnblogs.com/qamra/p/8721561.html 超参数的定义:在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据 ...
- 「POI2011」Meteors
「POI2011」Meteors 传送门 整体二分,树状数组实现区间修改单点查询,然后注意修改是在环上的. 参考代码: #include <cstdio> #include <vec ...
- Python 基础之序列化模块pickle与json
一:pickle 序列化模块把不能够直接存储的数据,变得可存储就是序列化把存储好的数据,转化成原本的数据类型,加做反序列化 php: 序列化和反序列化(1)serialize(2)unserializ ...
- Oracle10g下载地址
Oracle Database 10g Release 2 (10.2.0.1.0) Enterprise/Standard Edition for Microsoft Windows (32-bit ...
- 十五 Spring的AOP的注解的通知类型,切入点的注解
Spring的注解的AOP的通知类型 @Before:前置通知 @AfterReturning:后置通知 @Around:环绕通知 @AfterThrowing:异常抛出通知 @After:最终通知 ...
- 2_02_MSSQL课程_where查询和like模糊查询
1.where 条件过滤 常见的表达式过滤:比如: select * from 表 where Id>10; 多条件过滤: and or not (优先级:not > and > ...