Python数据分析与展示[第三周](pandas数据类型操作)
数据类型操作##
如何改变Series/ DataFrame 对象###
- 增加或重排:重新索引
- 删除:drop
重新索引 .reindex()####
reindex() 能够改变或重排Series和DataFrame索引
d.reindex(['c5','c4','v3','v2','c1'])
这样是改变index的顺序
d.reindex(column=['同比',...]
这样是改变column的顺序
.reincdex() 的参数#####
index,columns 新的行列顺序
fill_value 重新索引中,用于填充缺失位置的值
method 填充方法,ffill 向前填充,bfill 向后填充
limit 最大填充量
copy 默认True,生成新的对象
- 一个小例子,新增一列
newc=d.colimns.insert(4,'新增’)
newd=d.reindex(columns=newc,fill_value=200)
pandas 的索引类型(index)#####
.index .columns
index对象是一个不可修改的类型
+索引类型的常用操作
| 方法 | 说明 |
|---|---|
| .append(ids) | 链接另一个Index对象,产生新的Index对象 |
| .diff(dix) | 计算两个Index的差集 |
| .intersection(dix) | 计算两个Index的交集 |
| .union() | 计算两个Index的并集 |
| .delete(loc) | 删除loc位置的元素 |
| .insert(loc,e) | 在loc位置增加一个元素e |
通过操作索引可以操作数据类型
删除指定索引对象####
a=pd.Series([9,8,7,6],index=['a','b','c','d'])
a.drop(['b','c'])
使用drop方法删除了这一部分数值(删除某一个index(row))
d.drop(['同比], axis=1) 这样给出axis就可以删除列了。
0 轴是操作index(row)
1 轴是操作column
pandas的数据类型运算###
Series DataFram算术运算face
根据行列索引运算,补齐后运算,运算默认产生浮点数
补齐时缺失项填充NAN
二维和一维 一维和0惟 间进行boradcast
采用+-*/符号时产生新的运算对象
- 例子
a=pd.DataFrame(np.arange(12).reshape(3,4))
b=pd.DataFrame(np.arange(20).reshape(4,5))
a+b 补齐的都是NAN
方法形式的运算####
| 方法 | 说明 |
|---|---|
| .add(d,**argws) | 类型间加法运算可选参数 |
| .sub | |
| .mul | |
| .div |
使用方法好处是可以增加可选参数
fill_value= 补齐的时候使用fill_value来补齐
一维默认在轴一(row)参与运算,
b中给的每一个index(row) 减去a
如果希望在零轴上 (column) b 中的每一个column减去 a
比较运算####
只比较相同索引的元素,不补齐
不同维度的boradcast 默认时1轴(每一个index(row) 都作用到a))上
Python数据分析与展示[第三周](pandas数据类型操作)的更多相关文章
- Python数据分析与展示[第三周](pandas简介与数据创建)
第三周的课程pandas 分析数据 http://pandas.pydata.org import pandas as pd 常与numpy matplotlib 一块定义 d=pd.Series(r ...
- Python数据分析与展示[第三周](pandas数据特征分析单元8)
数据理解 基本统计 分布/累计统计 数据特征 数据挖掘 数据排序 操作索引的排序 .sort_index() 在指定轴上排序,默认升序 参数 axis=0 column ascending=True ...
- python数据分析及展示(三)
一.Pandas库入门 1. Pandas库的介绍 http://pandas.pydata.org Pandas是Python第三方库,提供高性能易用数据类型和分析工具 import pandas ...
- Python数据分析与展示第3周学习笔记(北京理工大学 嵩天等)
入门学习马上结束辽. 1.Pandas库 import pandas as pd 两个数据类型:Series,DataFrame Series类型:数据+索引 自定义索引 b = pd.Series( ...
- Python数据分析与展示第2周学习笔记(北理工 嵩天)
单元4:Matplotlib库入门 matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式 import matplotlib.pyplot as plt # -*- cod ...
- Python数据分析与挖掘所需的Pandas常用知识
Python数据分析与挖掘所需的Pandas常用知识 前言Pandas基于两种数据类型:series与dataframe.一个series是一个一维的数据类型,其中每一个元素都有一个标签.series ...
- 【学习笔记】PYTHON数据分析与展示(北理工 嵩天)
0 数据分析之前奏 课程主要内容:常用IDE:本课程主要使用:Anaconda Anaconda:一个集合,包括conda.某版本Python.一批第三方库等 -支持近800个第三方库 -适合科学计算 ...
- Python数据分析:手把手教你用Pandas生成可视化图表
大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事.但自从Python进入3.0时代以后, ...
- Python 学习日记(第三周)
知识回顾 在上一周的学习里,我学习了一些学习Python的基础知识下面先简短的回顾一些: 1Python的版本和和安装 Python的版本主要有2.x和3.x两个版本这两个版本在语法等方面有一定的区别 ...
随机推荐
- python-web-selenium模拟控制浏览器
用 selenium 模块控制浏览器 启动 selenium 控制的浏览器 from selenium import webdriver brower = webdriver.Firefox() br ...
- oracle中utl_file包读写文件操作实例学习
在oracle中utl_file包提供了一些操作文本文件的函数和过程,学习了一下他的基本操作 1.创建directory,并给用户授权 复制代码 代码如下: --创建directory create ...
- 使用Geomagic处理点云一般步骤
Geomagic处理几百万级数量点云一般处理步骤: 这只是一般的步骤, 对于处理结果要求不高的操作过程:高手请自行略过: 也许Geomagic的版本不同,但操作一般都是一样的顺序: 操作步骤 ...
- 2019-8-30-C#-如何在项目引用x86-x64的非托管代码
title author date CreateTime categories C# 如何在项目引用x86 x64的非托管代码 lindexi 2019-08-30 08:53:52 +0800 20 ...
- Luogu P3558 [POI2013]BAJ-Bytecomputer(线性dp)
P3558 [POI2013]BAJ-Bytecomputer 题意 给一个只包含\(-1,0,1\)的数列,每次操作可以让a[i]+=a[i-1],求最少操作次数使得序列单调不降.若无解则输出BRA ...
- Css if hack条件语法
Css if hack条件语法 <!--[if !IE]><!--> 除IE外都可识别 <!--<![endif]--><!--[if IE]> ...
- 转:PLL 锁相环
原地址:http://fangjian0518.blog.163.com/blog/static/559196562011210103455430/ PLL的作用? 答:LPC2000系列ARM内部 ...
- js笔试-接收get请求参数
请编写一个JavaScript函数,它的用途是接收url中get请求的参数,并返回为对象, 如: var url = “https://i.cnblogs.com/EditPosts.aspx?opt ...
- TZOJ 5110 Pollutant Control(边数最少最小割最小字典序输出)
描述 It's your first day in Quality Control at Merry Milk Makers, and already there's been a catastrop ...
- JS数组的相关方法
数组创建 JavaScript中创建数组有两种方式,第一种是使用 Array 构造函数: ? 1 2 3 var arr1 = new Array(); //创建一个空数组 var arr2 = ne ...