codeforces 1278F - Cards(第二类斯特林数+二项式)
解题过程:
\(答案=\sum^n_{i=0}*C^i_n*{\frac{1}{m}}^i*{\frac{m-1}{m}}^{n-i}*i^k\)
根据第二类斯特林数的性质\(n^k=\sum^k_{i=0}S^i_k*i!*C^i_n=\sum^k_{i=0}S^i_k*n^\underline{i}\)将普通幂转为下降幂
\(=\sum^n_{i=0}C^i_n*{\frac{1}{m}}^i*{\frac{m-1}{m}}^{n-i}\sum^k_{j=0}S^j_k*i^\underline{j}\)
\(=\sum^k_{j=0}S^j_k\sum^n_{i=0}C^i_n{\frac{1}{m}}^i{\frac{m-1}{m}}^{n-i}i^\underline{j}\)
把\(C^i_n\)化出来就是\(\frac{n!}{(n-i)!i!}\)
所以\(\frac{n!}{(n-i)!i!}i^\underline{j}=\frac{n!}{(n-i)!(i-j)!}=\frac{(n-j)!n^\underline{j}}{(n-i)!(i-j)!}=C^{i-j}_{n-j}n^\underline{j}\)
答案\(=\sum^k_{j=0}S^j_kn^\underline{j}\sum^n_{i=j}C^{i-j}_{n-j}*{\frac{1}{m}}^i*{\frac{m-1}{m}}^{n-i}\)
通过变换积分上下限有
\(=\sum^k_{j=0}S^j_kn^\underline{j}{\frac{1}{m}}^{j}\sum^{n-j}_{i=0}C^{i}_{n-j}*{\frac{1}{m}}^i*{\frac{m-1}{m}}^{n-i-j}\)
\(=\sum^k_{j=0}S^j_kn^\underline{j}{\frac{1}{m}}^{j}\)
\(n^2\)预处理第二类斯特林数,其他的可以过程中求
#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
// clock_t c1 = clock();
// std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define ls ((x) << 1)
#define rs ((x) << 1 | 1)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<ll, ll> PLL;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 5e5 + 7;
const ll MAXM = 1e5 + 7;
const ll MOD = 998244353;
const double eps = 1e-6;
const double pi = acos(-1.0);
ll quick_pow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (1LL * ans * a) % MOD;
a = (1LL * a * a) % MOD;
b >>= 1;
}
return ans;
}
ll s[5005][5005];
void go()
{
s[0][0] = 1;
for (int i = 1; i <= 5000; i++)
for (int j = 1; j <= i; j++)
s[i][j] = (s[i - 1][j - 1] + j * s[i - 1][j]) % MOD;
}
int main()
{
ll n, m, k;
go();
scanf("%lld%lld%lld", &n, &m, &k);
ll inv = quick_pow(m, MOD - 2);
ll ans = 0;
ll up = 1;
for (int i = 1; i <= k; i++)
{
(((up *= (n - i + 1)) %= MOD) *= inv) %= MOD;
(ans += s[k][i] * up) %= MOD;
}
printf("%lld\n", ans);
return 0;
}
codeforces 1278F - Cards(第二类斯特林数+二项式)的更多相关文章
- Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)
题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不 ...
- Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...
- Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
- Gym Gym 101147G 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G 题意:n个人,去参加k个游戏,k个游戏必须非空,有多少种放法? 分析: 第二类斯特林数,划分好k个集合后 ...
- Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
随机推荐
- 试着用教程跑cifar10数据
1.terminal里已经可import torchvision了,为什么Spyder里还是不能import torchvision 重启. 2. trainset = torchvision.dat ...
- 事件驱动框架EventNext之线程容器
EventNext是.net core下的一个事件驱动的应用框架,通过它代理创建的接口行为都是通过事件驱动的模式进行调用.由于EventNext的所有调用都是基于事件队列来进行,所以在资源控制上非常方 ...
- $loj\ 6045$ [雅礼集训 $2017\ Day8$] 价 网络流
正解:网络流 解题报告: 传送门$QwQ$ 这题还,挺有趣的我$jio$得. 考虑依然先是照着最小割的模子建图呗,然后从意义上来分析,割一条边就相当于不吃一种减肥药/买一种药材.由已知得,买的药材数量 ...
- 「USACO15FEB」Censoring (Silver) 审查(银) 解题报告
题面 就是让你--在字符串A中,如果字符串B是A的子串,那么就删除在A中第一个出现的B,然后拼接在一起,一直重复上述步骤直到B不再是A的子串 |A|\(\le 10^6\) 思路: KMP+栈 1.由 ...
- 1025 反转链表 (25 分)C语言
题目描述 给定一个常数K以及一个单链表L,请编写程序将L中每K个结点反转.例如:给定L为1→2→3→4→5→6,K为3,则输出应该为 3→2→1→6→5→4:如果K为4,则输出应该为4→3→2→1→5 ...
- V3微信支付开发笔录
真是坑爹啊,微信支付到处都是坑,一不小心就栽里面了, 文档也不怎么全,经过一周的奋斗终于把微信支付功能搞定,在此写下自己当时走入的误区和一些需要注意的地方,希望后边开发的朋友们可以少走弯路,少被微信坑 ...
- 从零开始Go语言-GoLand(编译器)-Windows(平台)
本文章适合那些想入门Go语言,却又不知道如何搭建自己的第一个HelloWorld的同学. 推荐几个Go语言相关学习网站: C语言中文网: http://c.biancheng.net/golang/ ...
- Swift之代码混淆的调研实施小记
背景: 最近做APP备案,需要对项目做一系列对优化改进,其中就包括了代码混淆,顾名思义,混淆是为了代码安全,是为了增加逆向破解的难度与复杂度. 目前市面上,免费和付费都有,一些公司对APP加固已经做成 ...
- bootstrap:导航下拉菜单
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...
- 小白学 Python 爬虫(36):爬虫框架 Scrapy 入门基础(四) Downloader Middleware
人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...