Wannafly Winter Camp 2020 Day 5B Bitset Master - 时间倒流
有 \(n\) 个点的树,给定 \(m\) 次操作,每个点对应一个集合,初态下只有自己。
第 \(i\) 次操作给定参数 \(p_i\),意为把 \(p_i\) 这条边的两个点的集合合并,并分别发配回这两个点
最后求每个点出现在多少个集合中
Solution
换个问题,求每个集合最后的大小。我们发现,如果将 \(u,v\) 合并,那么 \(f[u]=f[v]=f[u]+f[v]-f[u] \bigcap f[v]\)
而 \(f[u] \bigcap f[v]\) 之和上一次 \(u,v\) 合并的结果有关,于是我们可以对每条边单独记录一个数,表示上一次合并这条边的结果
回到原问题,我们发现,每个点被哪些集合包含,只需要倒叙处理新问题就可以得到原问题的答案
#include <bits/stdc++.h>
using namespace std;
const int N = 1000005;
int n,m,p[N],x[N],y[N],f[N],g[N];
void read(int &x) {
scanf("%d",&x);
}
void write(int x,int flag) {
printf("%d",x);
if(flag==0) putchar(' ');
else puts("");
}
signed main() {
read(n);read(m);
for(int i=1;i<n;i++) read(x[i]), read(y[i]);
for(int i=1;i<=m;i++) read(p[i]);
for(int i=1;i<=n;i++) f[i]=1;
for(int i=m;i>=1;--i) {
int u=x[p[i]], v=y[p[i]];
f[u]=f[v]=f[u]+f[v]-g[p[i]];
g[p[i]]=f[u];
}
for(int i=1;i<=n;i++) write(f[i],i==n);
}
Wannafly Winter Camp 2020 Day 5B Bitset Master - 时间倒流的更多相关文章
- Wannafly Winter Camp 2020 Day 5J Xor on Figures - 线性基,bitset
有一个\(2^k\cdot 2^k\) 的全零矩阵 \(M\),给出 \(2^k\cdot 2^k\) 的 \(01\) 矩阵 \(F\),现在可以将 \(F\) 的左上角置于 \(M\) 的任一位置 ...
- Wannafly Winter Camp 2020 Day 7E 上升下降子序列 - 数学
神奇公式 #include <bits/stdc++.h> using namespace std; #define int long long int n,mod,c[205][205] ...
- Wannafly Winter Camp 2020 Day 7D 方阵的行列式 - 数学
于是去弄了个板子来 #include <bits/stdc++.h> using namespace std; #define int long long const int mod = ...
- Wannafly Winter Camp 2020 Day 7A 序列 - 树状数组
给定一个全排列,对于它的每一个子序列 \(s[1..p]\),对于每一个 \(i \in [1,p-1]\),给 \(s[i],s[i+1]\) 间的每一个值对应的桶 \(+1\),求最终每个桶的值. ...
- Wannafly Winter Camp 2020 Day 6J K重排列 - dp
求 \(K\) 是多少个 \(n\) 元置换的周期.\(T\leq 100, n\leq 50, K \leq 10^{18}\) Solution 置换可以被试做若干个环组成的有向图,于是考虑 dp ...
- Wannafly Winter Camp 2020 Day 6I 变大! - dp
给定一个序列,可以执行 \(k\) 次操作,每次选择连续的三个位置,将他们都变成他们的最大值,最大化 \(\sum a_i\) 需要对每一个 \(k=i\) 输出答案 \(n \leq 50, a_i ...
- Wannafly Winter Camp 2020 Day 6H 异或询问 - 二分
给定一个长 \(n\) 的序列 \(a_1,\dots,a_n\),定义 \(f(x)\) 为有多少个 \(a_i \leq x\) 有 \(q\) 次询问,每次给定 \(l,r,x\),求 \(\s ...
- Wannafly Winter Camp 2020 Day 6G 单调栈 - 贪心
对于排列 \(p\),它的单调栈 \(f\) 定义为,\(f_i\) 是以 \(p_i\) 结尾的最长上升子序列的长度 先给定 \(f\) 中一些位置的值,求字典序最小的 \(p\) 使得它满足这些值 ...
- Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学
给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...
随机推荐
- The import java.io cannot be resolved (类库无法解析的问题解决 )
导入一个新项目后常会出现 The import java.io cannot be resolved String cannot be resolved to a type 其原因在于没有导入需要的包 ...
- ubuntu 14.04 安装gvim 后报出warning
(gvim:3572): GLib-GObject-WARNING **: Attempt to add property GnomeProgram::sm-connect after class w ...
- 快速理解YOLO目标检测
YOLO(You Only Look Once)论文 近些年,R-CNN等基于深度学习目标检测方法,大大提高了检测精度和检测速度. 例如在Pascal VOC数据集上Faster R-CNN的mAP达 ...
- Python中zip()函数的解释和可视化
zip()的作用 先看一下语法: zip(iter1 [,iter2 [...]]) -> zip object Python的内置help()模块提供了一个简短但又有些令人困惑的解释: 返回一 ...
- 1 深入Web请求过程
1.1 B/S网络架构概述 B/S 网络架构从前端到后端都得到了简化,都基于统一的应用层协议HTTP来交互数据,与大多数传统C/S互联网应用程 序采用的长连接的交互模式不同,HTTP采用无状态的短连接 ...
- 蓝桥杯2015年省赛C/C++大学B组
1. 奖券数目 有些人很迷信数字,比如带“4”的数字,认为和“死”谐音,就觉得不吉利.虽然这些说法纯属无稽之谈,但有时还要迎合大众的需求.某抽奖活动的奖券号码是5位数(10000-99999),要求其 ...
- [MP3]MP3固件持续分享(2019.1.25)
转载自我的博客:https://blog.ljyngup.com/archives/179.html/ 所有的固件到我的博客就可以下载哦 最后更新于2019.2.1 前言 这篇文章会持续更新不同型号的 ...
- Property - 特性(Python)
Property - Python 特性 不同的书籍对 property 一词的翻译有所不同, 我们将 property 翻译成 '特性' 以区别于 attribute 一词. 先看看 propert ...
- 基于原生的 html css js php ajax做的一个 web登录和注册系统
完整代码下载: 百度网盘地址 https://pan.baidu.com/s/1D1gqHSyjgfoOtYCZm7ofJg 提取码 :nf0b 永久有效 注意: 1 如果要正常运行此示例, 本地需要 ...
- lwip nd没有实现ra,contik有参考
lwip中关于nd的实现,没有路由器的功能,不能发送ra 在contiki中发现有nd发送ra的实现, contiki/core/net/ipv6/uip-ds6.c 在rs的接收处理中,发送soll ...