查阅了很多资料,逐渐知道了one hot 的编码,但是始终没理解sklearn. preprocessing.OneHotEncoder()如何进行fit()的?自己琢磨了一下,后来终于明白是怎么回事了。

先看one hot 的编码的理解:引用至:https://blog.csdn.net/wy250229163/article/details/52983760

网上关于One-hot编码的例子都来自于同一个例子,而且结果来的太抖了。查了半天,终于给搞清楚这个独热编码是怎么回事了,其实挺简单的,这里再做个总结。 首先,引出例子:

已知三个feature,三个feature分别取值如下: feature1=[“male”, “female”] feature2=[“from Europe”, “from US”, “from Asia”] feature3=[“uses Firefox”, “uses Chrome”, “uses Safari”, “uses Internet Explorer”]

如果做普通数据处理,那么我们就按0,1,2,3进行编号就行了。例如feature1=[0,1],feature2=[0,1,2],feature3=[0,1,2,3]。 那么,如果某个样本为[“male”,“from Asia”, “uses Chrome”],它就可以表示为[0,2,1]。 以上为普通编码方式。 独热编码(One-hot)换了一种方式编码,先看看百科定义的:

独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。 例如对六个状态进行编码: 自然顺序码为 000,001,010,011,100,101 独热编码则是 000001,000010,000100,001000,010000,100000

通过以上可以看到,独热编码每一个码的总的位数取决于状态的种类数,每一个码里的“1”的位置,就代表了哪个状态生效。 还是回到我们最开始的例子,那么我们将它换成独热编码后,应该是: feature1=[01,10] feature2=[001,010,100] feature3=[0001,0010,0100,1000]

注意,独热编码还有个特性是,当某个特征里的某一状态生效后,此特征的其他状态因为是互斥的关系,必须全部为0,切必须全部添加到特征里,不能省略不写。 所以,对于前边样本[“male”,“from Asia”, “uses Chrome”],经过独热编码后,它应该为: [01,00, 000,000,100, 0000,0010,0000,0000] 。

以上的独热编码可以写成简写形式: [1,0, 0,0,1, 0,1,0,0]

最后,摘抄下独热编码的好处:

由于分类器往往默认数据数据是连续的,并且是有序的,但是在很多机器学习任务中,存在很多离散(分类)特征,因而将特征值转化成数字时,往往也是不连续的, One-Hot 编码解决了这个问题。 并且,经过独热编码后,特征变成了稀疏的了。这有两个好处,一是解决了分类器不好处理属性数据的问题,二是在一定程度上也起到了扩充特征的作用。

然后网上很多人举了一个sklearn. preprocessing.OneHotEncoder()的例子:例子如下:

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) >>> enc.n_values_
array([2, 3, 4]) >>> enc.feature_indices_
array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])

看了很多人的博客,都没懂,于是自己琢磨,原来是fit是看可以取多少个值。比如在

enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) 

这个fit中,所有的数组第一个元素取值分别为:0,1,0,1(黄色标注的),最大为1,且为两种元素(0,1),说明用2个状态位来表示就可以了,且该维度的value值为2(该值只与最大值有关系,最大值为1)

所有的数组第二个元素取值分别为:0,1,2,0(红色标注的),最大为2,且为两种元素(0,1,2),说明用3个状态位来表示就可以了,且该维度的value值为3(该值只与最大值有关系,最大值为2)

所有的数组第三个元素取值分别为:3,0,1,2(天蓝色标注的),最大为3,且为两种元素(0,1,2,3),说明用4个状态位来表示就可以了,且该维度的value值为4(该值只与最大值有关系,最大值为4)

所以整个的value值为(2,3,4),这也就解释了 enc.n_values_等于array([2,3,4])的原因。而enc.feature_indices_则是特征索引,该例子中value值为(2,3,4),则特征索引从0开始,到2的位置为第一个,到2+3=5的位置为第二个,到2+3+4的位置为第三个,索引为array([0,2,5,9])

那么接下来理解

>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) 这个就好办了,enc.transform就是将[0,1,1]这组特征转换成one hot编码,toarray()则是转成数组形式。[0,1,1],
第一个元素是0,由于之前的fit的第一个维度为2(有两种表示:10,01.程序中10表示0,01表示1),所以用1,0表示用黄色标注);
第二个元素是1,由于之前的fit的第二个维度为3(有三种表示:100,010,001.程序中100表示0,010表示1,001表示2),所以用0,1,0表示用红色标注);
第三个元素是1,由于之前的fit的第三个维度为4(有四种表示:1000,0100,0010,0001.程序中1000表示0,0100表示1,0010表示2,0001表示3),
所以用0,1,0,0(用天蓝色标注)表示。综上所述:[0,1,1]就被表示为array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])。 排版不易,怎么排着排着就字体变成这样了,而且 还没找到格式刷。不过,总算理解了one hot编码和sklearn. preprocessing.OneHotEncoder()如何进行fit()的
有什么问题的欢迎指正,谢谢!
 

对one hot 编码的理解,sklearn. preprocessing.OneHotEncoder()如何进行fit()的?的更多相关文章

  1. sklearn.preprocessing OneHotEncoder——仅仅是数值型字段才可以,如果是字符类型字段则不能直接搞定

    >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() > ...

  2. sklearn preprocessing 数据预处理(OneHotEncoder)

    1. one hot encoder sklearn.preprocessing.OneHotEncoder one hot encoder 不仅对 label 可以进行编码,还可对 categori ...

  3. sklearn.preprocessing.StandardScaler 离线使用 不使用pickle如何做

    Having said that, you can query sklearn.preprocessing.StandardScaler for the fit parameters: scale_ ...

  4. 【sklearn】数据预处理 sklearn.preprocessing

    数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...

  5. sklearn学习笔记(一)——数据预处理 sklearn.preprocessing

    https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...

  6. sklearn.preprocessing.LabelEncoder的使用

    在训练模型之前,我们通常都要对训练数据进行一定的处理.将类别编号就是一种常用的处理方法,比如把类别"男","女"编号为0和1.可以使用sklearn.prepr ...

  7. 从ord()中对Unicode编码的理解

    刚开始学习编程的时候,老对字符串编码的理解模模糊糊.也一直看这方便的资料,今天在看Dive in python时,突然有了新的理解(不知道是否正确). Python有个built-in函数ord(), ...

  8. 数据规范化——sklearn.preprocessing

    sklearn实现---归类为5大类 sklearn.preprocessing.scale()(最常用,易受异常值影响) sklearn.preprocessing.StandardScaler() ...

  9. sklearn.preprocessing.LabelBinarizer

    sklearn.preprocessing.LabelBinarizer

随机推荐

  1. lua学习之深入函数第二篇

    深入函数 2 非全局的函数 函数是第一类值,函数可以存储到全局变量,局部变量,table 字段中 lua 函数库中的大部分函数存储到 table 字段中 Lib = {} Lib.foo = func ...

  2. 图解css3学习笔记

    (0)css3是啥 css3是最新版本的css,添加了许多新的特性,将切图仔从繁重的工作中解救出来. css3现在主流的浏览器大部分都支持(ie9部分支持,ie8之前的都不支持) 渐进增强,优雅降级 ...

  3. .NET Core 3 Web Api Cors fetch 一直 307 Temporary Redirect

    .NET Core 3 Web Api Cors fetch 一直 307 Temporary Redirect 继上一篇 .net core 3 web api jwt 一直 401 为添加JWT- ...

  4. Spring Boot自动配置如何工作

    通过使用Mongo和MySQL DB实现的示例,深入了解Spring Boot的@Conditional注释世界. 在我以前的文章“为什么选择Spring Boot?”中,我们讨论了如何创建Sprin ...

  5. 百度架构师带你进阶高级JAVA架构,让你快速从代码开发者成长为系统架构者

    百度架构师带你进阶高级JAVA架构,让你快速从代码开发者成长为系统架构者 1.

  6. VMware使用与安装

    VMware安装 下载完Vmware -> 双击打开安装包 -> 选择下一步(如下图界面) 选择接受协议,点击下一步 选择经典进行安装.这个是默认安装,会把默认插件安装到相对应的路径 选择 ...

  7. MongoDB高可用架构集群管理(一)

    MongoDB数据库核心的两个特点:第一个特点是副本集的自动切换,保证数据的高可靠.服务的高可用:第二个特点是自动分片.服务的横向扩展能力. (一)副本集架构 MongoDB的副本集是一组保持相同数据 ...

  8. cra

    const paths = require('react-scripts/config/paths'); paths.appBuild = path.join(path.dirname(paths.a ...

  9. 斯坦福发布2019全球AI报告:中国论文数量超美国,自动驾驶汽车领域获投资最多

    近日,斯坦福联合MIT.哈佛.OpenAI等院校和机构发布了一份291页的<2019年度AI指数报告>. 这份长达291页的报告从AI的研究&发展.会议.技术性能.经济.教育.自动 ...

  10. Linux内核镜像文件格式与生成过程(转)

    <Linux内核镜像格式>   Linux内核有多种格式的镜像,包括vmlinux.Image.zImage.bzImage.uImage.xipImage.bootpImage等. ➤k ...