高斯消元+期望dp——light1151
高斯消元弄了半天没弄对。。
#include<bits/stdc++.h>
using namespace std;
#define maxn 205
#define eps 1e-8
double A[maxn][maxn],x[maxn],ans[maxn];
int nxt[maxn],n;
#define a A
void guess(int n){ //行,列
for(int i=;i<n;i++){
if(a[i][i]==){//求主元的时候不能直接用swap进行交换
int id=;
for(int j=i+;j<=n;j++)
if(a[j][i]!=)
id=j;
for(int j=i;j<=n+;j++)
swap(a[i][j],a[id][j]);
}
for(int j=i+;j<=n;j++){//消下三角
double t=a[j][i]/a[i][i];
for(int k=i;k<=n+;k++)
a[j][k]-=(a[i][k]*t);
}
} for(int i=n;i>=;i--)
{
for(int j=i+;j<=n;j++)
a[i][n+]-=ans[j]*a[i][j];
ans[i]=a[i][n+]/a[i][i];
}
}
int main(){
int t;cin>>t;
for(int tt=;tt<=t;tt++){
int n;cin>>n;
memset(nxt,,sizeof nxt);
memset(A,,sizeof A);
for(int i=;i<n;i++){int x,y;cin>>x>>y;nxt[x]=y;}
for(int i=;i<;i++){//建立矩阵
if(nxt[i]){
A[i][i]=;
A[i][]=;
A[i][nxt[i]]=-;
}
else {
int k=;
for(int j=;i+j<= && j<=;j++){
k++;
A[i][i+j]=-;
}
A[i][i]=k,A[i][]=;
}
} A[][]=;A[][]=;
guess();
printf("Case %d: %.10lf\n",tt,ans[]);
}
return ;
}
高斯消元+期望dp——light1151的更多相关文章
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)
传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ...
- Codeforces 446D - DZY Loves Games(高斯消元+期望 DP+矩阵快速幂)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,%%% 首先考虑所有格子都是陷阱格的情况,那显然就是一个矩阵快速幂,具体来说,设 \(f_{i,j}\) 表示走了 \(i\) 步 ...
- HDU2262;Where is the canteen(高斯消元+期望)
传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...
- BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan
先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- CF113D 高斯消元、dp
题目链接 https://codeforces.com/contest/113/problem/D 思路 \(k[i]=\frac{1-p[i]}{ru[i]}\) f[i][j]表示经过i和j的次数 ...
- LightOJ 1151 - Snakes and Ladders 高斯消元+概率DP
首先来个期望的论文,讲的非常好,里面也提到了使用线性方程组求解,尤其适用于有向图的期望问题. 算法合集之<浅析竞赛中一类数学期望问题的解决方法> http://www.lightoj.co ...
- hdu4870 Rating (高斯消元或者dp)
Rating Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- [luogu2973]driving out the piggies 驱逐猪猡【高斯消元+概率DP】
看到题面的那一刻,我是绝望的ORZ 图论加概率期望加好像不沾边的高斯消元???我人直接傻掉 还没学过概率期望的我果断向题解屈服了(然后还是傻掉了两节课来找线性方程.. Description 奶牛们建 ...
随机推荐
- Spring源码由浅入深系列六 CreateBean过程
- 让BB-Black通过usb0上网
Frm: http://blog.csdn.net/jamselaot/article/details/17080011 既然我们已经用usb0作为主机和BB-Black之间的网络通道了,再进一步,就 ...
- [17]APUE:线程
通常情况下,线程模型的并发性能优于进程模型,但不总是这样 线程的优势: 线程的创建.销毁及上下文切换代价比进程低 某些情况下,使用线程可以简化逻辑,避免异步编程的复杂性 同一进程内所有线程共享全局内存 ...
- springboot + ajax + mybatis 实现批量删除
实现思路: 1. checkbox全选获取批量删除的id数组 2. ajax以字符串的形式将id数组传给控制器 3. 控制器将字符串分割成List数组作为参数传给mapper 具体代码: 1. 前端代 ...
- 【POJ】2253 Frogger
= =.请用C++提交.. 如果有朋友能告诉我G++和C++交题什么机制..我感激不尽.G++杀我. 题目链接:http://poj.org/problem?id=2253 题意:青蛙A要去找B约会, ...
- 5个Sublime Text 的插件推荐
Sublime Text 是一个代码编辑器(Sublime Text 2是收费软件,但可以无限期试用),也是HTML和散文先进的文本编辑器.Sublime Text是由程序员Jon Skinner于2 ...
- c++11 Thread库写多线程程序
一个简单的使用线程的Demo c++11提供了一个新的头文件<thread>提供了对线程函数的支持的声明(其他数据保护相关的声明放在其他的头文件中,暂时先从thread头文件入手吧),写一 ...
- es5 JSON对象
1. JSON.stringify(obj/arr) js对象(数组)转换为json对象(数组) 2. JSON.parse(json) json对象(数组)转换为js对象(数组) <!DOCT ...
- 使用Element的upload上传组件,不使用action属性上传
1.需要实现的效果如下图,在点击提交的时候再提交file数据,和其他数据统一上传,我把file转换成了base64的格式,可以再上传之前显示缩略图 2.代码分析 action属性值为"#&q ...
- Apache虚拟目录实现同一个IP绑定多个域名
在前:我使用的是Xampp,所以路径可能不同 找到apache\conf\extra\httpd-vhosts.conf, 如果没有的话请自己新建httpd-vhosts.conf文件, 并且在htt ...