fasttext的基本使用 java 、python为例子

今天早上在地铁上看到知乎上看到有人使用fasttext进行文本分类,到公司试了下情况在GitHub上找了下,最开始是c++版本的实现,不过有JavaPython版本的实现了,正好拿下来试试手,

python情况:

python版本参考,作者提供了详细的实现,并且提供了中文分词之后的数据,正好拿下来用用,感谢作者,代码提供的数据作者都提供了,点后链接在上面有百度盘,可下载,java接口用到的数据也一样:

  1. http://blog.csdn.net/lxg0807/article/details/52960072
  1. import logging
  2. import fasttext
  3. logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
  4. #classifier = fasttext.supervised("fasttext/news_fasttext_train.txt","fasttext/news_fasttext.model",label_prefix="__label__")
  5. #load训练好的模型
  6. classifier = fasttext.load_model('fasttext/news_fasttext.model.bin', label_prefix='__label__')
  7. result = classifier.test("fasttext/news_fasttext_test.txt")
  8. print(result.precision)
  9. print(result.recall)
  10. labels_right = []
  11. texts = []
  12. with open("fasttext/news_fasttext_test.txt") as fr:
  13. lines = fr.readlines()
  14. for line in lines:
  15. labels_right.append(line.split("\t")[1].rstrip().replace("__label__",""))
  16. texts.append(line.split("\t")[0])
  17. #     print labels
  18. #     print texts
  19. #     break
  20. labels_predict = [e[0] for e in classifier.predict(texts)] #预测输出结果为二维形式
  21. # print labels_predict
  22. text_labels = list(set(labels_right))
  23. text_predict_labels = list(set(labels_predict))
  24. print(text_predict_labels)
  25. print(text_labels)
  26. A = dict.fromkeys(text_labels,0)  #预测正确的各个类的数目
  27. B = dict.fromkeys(text_labels,0)   #测试数据集中各个类的数目
  28. C = dict.fromkeys(text_predict_labels,0) #预测结果中各个类的数目
  29. for i in range(0,len(labels_right)):
  30. B[labels_right[i]] += 1
  31. C[labels_predict[i]] += 1
  32. if labels_right[i] == labels_predict[i]:
  33. A[labels_right[i]] += 1
  34. print(A )
  35. print(B)
  36. print( C)
  37. #计算准确率,召回率,F值
  38. for key in B:
  39. p = float(A[key]) / float(B[key])
  40. r = float(A[key]) / float(C[key])
  41. f = p * r * 2 / (p + r)
  42. print ("%s:\tp:%f\t%fr:\t%f" % (key,p,r,f))

java版本情况:

githup上下载地址:
  1. https://github.com/ivanhk/fastText_java
看了下sh脚本的使用方法,自己简单些了个text的方法,正好用用,后面会拿xgboost进行对比,看看效果,效果可以的写成service进行上线:
  1. package test;
  2. import java.util.List;
  3. import fasttext.FastText;
  4. import fasttext.Main;
  5. import fasttext.Pair;
  6. public class Test {
  7. public static void main(String[] args) throws Exception {
  8. String[] text = {
  9. "supervised",
  10. "-input",
  11. "/Users/shuubiasahi/Documents/python/fasttext/news_fasttext_train.txt",
  12. "-output", "/Users/shuubiasahi/Documents/faste.model", "-dim",
  13. "10", "-lr", "0.1", "-wordNgrams", "2", "-minCount", "1",
  14. "-bucket", "10000000", "-epoch", "5", "-thread", "4" };
  15. Main op = new Main();
  16. op.train(text);
  17. FastText fasttext = new FastText();
  18. String[] test = { "就读", "科技", "学生" ,"学生","学生"};
  19. fasttext.loadModel("/Users/shuubiasahi/Documents/faste.model.bin");
  20. List<Pair<Float, String>> list = fasttext.predict(test, 6);  //得到最大可能的六个预测概率
  21. for (Pair<Float, String> parir : list) {
  22. System.out.println("key is:" + parir.getKey() + "   value is:"
  23. + parir.getValue());
  24. }
  25. System.out.println(Math.exp(list.get(0).getKey()));  //得到最大预测概率
  26. }
  27. }
这里设置bucket不适用设置过大,过大会产生OOM,而且模型保存太大,上面的设置模型保存就有1个g,-wordNgrams可以设置为2比设置为1能提高模型分类的准确性,
 
结果情况:

key is:0.0   value is:__label__edu

key is:-17.75125   value is:__label__affairs

key is:-17.75125   value is:__label__economic

key is:-17.75125   value is:__label__ent

key is:-17.75125   value is:__label__fashion

key is:-17.75125   value is:__label__game

1.0

注意fasttext对输入格式有要求,label标签使用  “__label__”+实际标签的形式,   over

有问题联系我

2016年5月26   我的模型已经上线了    效果还不错

fasttext的基本使用 java 、python为例子的更多相关文章

  1. 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)

    梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...

  2. 编程开发(C/C++&Java&Python&JavaScript&Go&PHP&Ruby&Perl&R&Erlang)

    使用Docker快速部署主流编程语言的开发.编译环境及其常用框架,包括C.C++.Java.Python.JavaScript.Go.PHP.Ruby.Perl.R.Erlang等. 在今后采用编程语 ...

  3. (八)map,filter,flatMap算子-Java&Python版Spark

    map,filter,flatMap算子 视频教程: 1.优酷 2.YouTube 1.map map是将源JavaRDD的一个一个元素的传入call方法,并经过算法后一个一个的返回从而生成一个新的J ...

  4. 芒果TV招聘研发工程师(JAVA PYTHON),地点长沙

    长沙芒果TV招聘高级 JAVA Python 工程师,工作地点:湖南广电   有兴趣的邮件0xmalloc@gmail.com; zealotyin@qq.com 公司有一大批从北京上海一线互联网企业 ...

  5. paip.提高效率---集合的存取括号方式 uapi java python php js 的实现比较

    paip.提高效率---集合的存取括号方式 uapi java python php js 的实现比较 ##java ----------- 在JDK1.7中,摒弃了Java集合接口的实现类,如:Ar ...

  6. paip.复制文件 文件操作 api的设计uapi java python php 最佳实践

    paip.复制文件 文件操作 api的设计uapi java python php 最佳实践 =====uapi   copy() =====java的无,要自己写... ====php   copy ...

  7. paip.获取文件名从路径uapi java python php总结...

    paip.获取文件名从路径uapi java python php总结... =====uapi basename_noext($fname); =============java  自己写.. St ...

  8. paip.日期时间操作以及时间戳uapi php java python 总结

    paip.日期时间操作以及时间戳uapi php java python 总结 ///uapi Date 函数 | Day 函数 | Hour 函数 | Minute 函数 | Month 函数 | ...

  9. paip.文件读写api php java python总结.txt

    paip.文件读写api php java python总结.txt 一.多种方式读文件内容.    1.按字节读取文件内容   以字节为单位读取文件,常用于读二进制文件,如图片.声音.影像等文件. ...

随机推荐

  1. Dart编程实例 - 相等和关系操作符

    Dart编程实例 - 相等和关系操作符 void main() { var num1 = 5; var num2 = 9; var res = num1>num2; print('num1 gr ...

  2. Java分支结构

    Java 分支结构 - if...else/switch 顺序结构只能顺序执行,不能进行判断和选择,因此需要分支结构. Java有两种分支结构: if语句 switch语句 if语句 一个if语句包含 ...

  3. 30分钟全方位了解阿里云Elasticsearch

    摘要:阿里云Elasticsearch提供100%兼容开源Elasticsearch的功能,以及Security.Machine Learning.Graph.APM等商业功能,致力于数据分析.数据搜 ...

  4. ORACLE动态sql在存储过程中出现表或视图不存在的解决方法

    Oracle动态sql在存储过程中出现表或视图不存在的解决方法 CREATE OR REPLACE PROCEDURE P_test is strsql varchar2(2000); BEGIN   ...

  5. mysql注入篇

    博客这个东西真的很考验耐心,每写一篇笔记,都是在艰难的决定中施行的,毕竟谁都有懒惰的一面,就像这个,mysql注入篇,拖拖拖一直拖到现在才开始总结,因为这个实在是太多太杂了,细细的总结一篇太烧脑. 由 ...

  6. JAVA并发工具类---------------(CountDownLatch和CyclicBarrier)

    CountDownLatch是什么 CountDownLatch,英文翻译为倒计时锁存器,是一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待. 闭锁可以延迟线程的进 ...

  7. Tomcat运行错误示例二

    Tomcat运行错误示例二 当遇到这种错误时,一般是构建路径的问题,按步骤来就好.如图: 点击---->库---->Add Library---->下一步---->选择tomc ...

  8. GIT 学习第二天 (二)

    工作区和暂存区 工作区: 就是你在电脑里能看到的目录,比如:webgit 文件夹 就是一个工作区 版本库: 工作区有一个隐藏目录 .git ,这个不算工作区,而是Git的版本库 Git的版本库里存了很 ...

  9. 净心诀---python3生成器

    生成器的作用----减少程序运行的内存开销 生成器特点: 1.一个一个的取值,而不是一次性把所有数据创建出来,迭代器中的数据不取不创建2.只能按照顺序取,不能跳过也不能回头3.一个迭代器中的数据只能从 ...

  10. 使用Swagger2Markup归档swagger生成的API文档

    文章出处: http://blog.didispace.com/swagger2markup-asciidoc/ 说明 项目中使用Swagger之后,我们能够很轻松的管理API文档,并非常简单的模拟接 ...