[BOI2003]团伙
题目描述
1920年的芝加哥,出现了一群强盗。如果两个强盗遇上了,那么他们要么是朋友,要么是敌人。而且有一点是肯定的,就是:
我朋友的朋友是我的朋友;
我敌人的敌人也是我的朋友。
两个强盗是同一团伙的条件是当且仅当他们是朋友。现在给你一些关于强盗们的信息,问你最多有多少个强盗团伙。
输入输出格式
输入格式:
输入文件gangs.in的第一行是一个整数N(2<=N<=1000),表示强盗的个数(从1编号到N)。 第二行M(1<=M<=5000),表示关于强盗的信息条数。 以下M行,每行可能是F p q或是E p q(1<=p q<=N),F表示p和q是朋友,E表示p和q是敌人。输入数据保证不会产生信息的矛盾。
输出格式:
输出文件gangs.out只有一行,表示最大可能的团伙数。
输入输出样例
6
4
E 1 4
F 3 5
F 4 6
E 1 2
3 分析:
本题作为并查集的基础题目已经成为了并查集必练题目,比较经典,代码实现也较为简单,基本上就是裸的并查集模板了。只要在合并前进行一次判断即可 CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m,f[];
int t[],ans,x[];
int find(int k){
if(f[k]==k)return k;
return f[k]=find(f[k]);
}
void merge(int x,int y){
x=find(f[x]);
y=find(f[y]);
f[x]=y;
return ;
}
int main(){
cin>>n>>m;
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<=m;i++){
char c;
int p,q;
cin>>c>>p>>q;
if(c=='F')
merge(p,q);
else{
if(x[p]==)
x[p]=find(q);
else
merge(q,x[p]);
if(x[q]==)
x[q]=find(p);
else
merge(p,x[q]);
}
}
for(int i=;i<=n;i++)
t[find(i)]++;
for(int i=;i<=n;i++)
if(t[i]) ans++;
cout<<ans;
return ;
}
[BOI2003]团伙的更多相关文章
- Luogu P1892 [BOI2003]团伙
P1892 [BOI2003]团伙 题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人 ...
- P1892 [BOI2003]团伙 并查集
题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人也是我的朋友. 两个强盗是同一团伙的 ...
- 洛谷 P1892 [BOI2003]团伙(并查集)
嗯... 题目链接:https://www.luogu.org/problemnew/show/P1892 通过读题可以很清楚的发现这是一个并查集的题,并且要有两个集合: 若他们p和q是朋友,则存入第 ...
- 洛谷 P1892 [BOI2003]团伙
题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人也是我的朋友. 两个强盗是同一团伙的 ...
- 【题解】P1892 [BOI2003]团伙-C++
原题传送门 前置知识:并查集,不会的补了再来. 这道题只是在并查集的基础上多了一个操作而已. 这种操作,叫做反集(就先这么叫着) 题目里有一种关系是互为朋友,这很好理解,把互为朋友的两个点合并就可以了 ...
- 洛谷 P1892 [BOI2003]团伙(种类并查集)
传送门 解题思路 用并查集f存朋友关系,一个数组e存的是敌人关系,是一个辅助数组,所以叫做种类并查集. 当p和q是朋友时,直接合并,但是当是敌人时,需要一些操作. 当p还没有敌人时(即p的敌人是自己) ...
- BOI 2003 团伙
洛谷 P1892 [BOI2003]团伙 洛谷传送门 题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋 ...
- CF553C Love Triangles
题目链接 题意:给定n个点,给出一些边权为0/1的边,构造完全图,满足对于任何一个三元环,三条边权和为奇.求符合条件的完全图数量,对\(1e9+7\)取模. 分析:其实原题给定的边权是love/hat ...
- NOIP提高组题目归类+题解摘要(2008-2017)
因为前几天作死立了一个flag说要把NOIP近十年的题目做一做,并写一个题目归类+题解摘要出来,所以这几天就好好的(然而还是颓废了好久)写了一些这些往年的NOIP题目. 这篇博客有什么: 近十年NOI ...
随机推荐
- (转)Linux C 多线程编程----互斥锁与条件变量
转:http://blog.csdn.net/xing_hao/article/details/6626223 一.互斥锁 互斥量从本质上说就是一把锁, 提供对共享资源的保护访问. 1. 初始化: 在 ...
- HDU6333 求组合数前m项的和
目录 分块 莫队 @ HDU6333:传送门 题意:求组合数前m项的和. 在线分块or离线莫队 分块 重要的一个定理: \[C_{n}^{m} = 0\;\;m > n\] \[C_{n}^{m ...
- Mac 安装react-native 环境踩坑记
我的工程创建时间是2019.7.11号下午 :首先看一下最后我的工程的package.json各个包的版本: { "name": "MyApp", &quo ...
- (16)centos7 日志文件
常见日志文件 开机启动日志,只会记录本次信息 /var/log/boot.log 计划任务日志 /var/log/cron 开机内核检测信息 /var/log/dmesg 账号登录信息 /var/lo ...
- 24、echarts做报表
1.今天就来讲一讲echarts的使用 使用步骤 (1)首先需要下载包echarts.js,然后引入该包, <!DOCTYPE html> <html> <header& ...
- Jmeter断言-所有断言讲解
Jmeter断言-所有断言讲解 jmeter中有个元件叫做断言(Assertion),它的作用和loadrunner中的检查点类似: 用于检查测试中得到的响应数据等是否符合预期,用以保证性能测试过程中 ...
- Dubbo入门到精通学习笔记(十七):FastDFS集群的安装、FastDFS集群的配置
文章目录 FastDFS集群的安装 FastDFS 介绍(参考:http://www.oschina.net/p/fastdfs) FastDFS 上传文件交互过程: FastDFS 下载文件交互过程 ...
- UVA 1525 Falling Leaves
题目链接:https://vjudge.net/problem/UVA-1525 题目链接:https://vjudge.net/problem/POJ-1577 题目大意 略. 分析 建树,然后先序 ...
- 剑指offer——59二叉搜索树的第k大节点
题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. 题解: 考察的就是中序遍历 不过注意进行剪枝 cl ...
- HTTP信息头处理器
就是HTTP请求头-Header