今天为大家带来最小生成树的第二种实现方式,比起kruskal来说,prim相对要复杂一些,在稠密图的表现中表现较好,最优情况下也是nlogn级别.

描述:

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。---百度百科
 
 

输入:
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
输出:
7
 
 
#include <bits/stdc++.h>
#define N 999999
using namespace std;
int dis[N],cnt=,m,out,n;
int now=,totw;
int head[N];
int u,v,w;
struct node
{
int v;
int next;
int w;
} e[N<<];
int vis[N];
inline void add(int u,int v,int w)
{
e[cnt].v=v;
e[cnt].next=head[u];
e[cnt].w=w;
head[u]=cnt;
cnt++;
}
inline int prim()
{
memset(dis,N,sizeof(dis)); for(int i=head[]; i; i=e[i].next)
{
dis[e[i].v]=min(dis[e[i].v],e[i].w);
}
while(out!=n-)
{ int minn=N;
vis[now]=;
for(int i=; i<=n; i++)
{
if(!vis[i]&&minn>dis[i])
{
minn=dis[i];
now=i;
}
}
totw+=minn;
for(int i=head[now]; i; i=e[i].next)
{
int v=e[i].v;
if(dis[v]>e[i].w&&!vis[v])
{
dis[v]=e[i].w;
}
}
out++;
}
return totw;
}
int main()
{
cin>>n>>m;
for(int i=; i<=m; i++)
{
cin>>u>>v>>w;
add(u,v,w);
add(v,u,w);
}
cout<<prim();
return ;
}

最小生成树(二)prim的更多相关文章

  1. Hihocoder 之 #1097 : 最小生成树一·Prim算法 (用vector二维 模拟邻接表,进行prim()生成树算法, *【模板】)

    #1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可 ...

  2. java实现最小生成树的prim算法和kruskal算法

    在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...

  3. 最小生成树的Prim算法

       构造最小生成树的Prim算法    假设G=(V,E)为一连通网,其中V为网中所有顶点的集合,E为网中所有带权边的集合.设置两个新的集合U和T,其中集合U用于存放G的最小生成树的顶点,集合T用于 ...

  4. hihocoder#1098 : 最小生成树二·Kruscal算法

    #1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...

  5. Hihocoder #1098 : 最小生成树二·Kruskal算法 ( *【模板】 )

    #1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...

  6. 数据结构(三十三)最小生成树(Prim、Kruskal)

    一.最小生成树的定义 一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边. 在一个网的所有生成树中,权值总和最小的生成树称为最小代价生成树(Minimum ...

  7. 最小生成树之 prim算法和kruskal算法(以 hdu 1863为例)

    最小生成树的性质 MST性质:设G = (V,E)是连通带权图,U是V的真子集.如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中, (u,v)的权c[u][v]最小,那么一定存在G的一棵最 ...

  8. MST最小生成树及Prim普鲁姆算法

    MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而 ...

  9. C++编程练习(10)----“图的最小生成树“(Prim算法、Kruskal算法)

    1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数 ...

随机推荐

  1. 洛谷P1385 密令 题解 动态规划

    题目链接:https://www.luogu.com.cn/problem/P1385 题目大意: 给定一小写字母串s,每次操作你可以选择一个p(1<=p<|s|)执行下述修改中的任意一个 ...

  2. 【转】C#中base关键字的几种用法:base()

    转:https://blog.csdn.net/cplvfx/article/details/82982862 base其实最大的使用地方在面相对象开发的多态性上,base可以完成创建派生类实例时调用 ...

  3. html 小游戏合集(1.0)

    最近做了个小游戏合集,有点沙雕,毕竟是1.0,将就看看. <!DOCTYPE html> <html> <head> <meta charset=" ...

  4. css label两端对齐

    上面这种效果很常见,实现的代码如下: html部分 <ul> <li class="detail_item"> <span class="d ...

  5. LinkedHashMap与HashMap的使用比较

    现在由于项目需要,使用了LinkedHashMap,一开始由于很少用到Map,然后就直接使用了HashMap,在将数据成功存入之后取出来就出了问题,数据输出顺序没有按预期顺序输出,现在先看代码: 文件 ...

  6. ArcGIS Enterprise 10.6 (Windows)安装及部署图解

    目录 前言 1 本地环境配置 1.1 机器名修改 1.2 安装和配置IIS 2 ArcGIS for Server 2.1 安装 ArcGIS for Server 2.2 配置 ArcGIS for ...

  7. floj 2265 【lxs Contest #141】航海舰队

    首先抠出包围了阵形的最小矩形. 将地图拉伸成一条链,即将第一行.第二行.第三行按顺序连接.阵形也可以用同样的方法处理. 那么问题转化为,给定两个 01 串 S 和 T,问每个 S 中长度为 |T| 的 ...

  8. ubuntu下报错Sub-process /usr/bin/dpkg returned an error code (1)的解决方法

    cd /var/lib/dpkg sudo mv info info.bak #即备份一个info sudo mkdir info #新建一个新的info目录 然后采用以下命令重装那些出错的软件包 s ...

  9. scalikeJDBC的restapi

    ScalikeJDBC是一个Scala的JDBC框架,适用于绝大多数RDBMS数据库(关系数据库) 重要的是,在这几天简单的使用了一下,用sqlserver来测试了一下用mysql或者h2的scali ...

  10. HTML中使用Vue+Dhtmlxgantt制作任务进度图

    HTML中使用Vue+Dhtmlxgantt制作任务进度图 Dhtmlxgantt官网: https://dhtmlx.com/docs/products/dhtmlxGantt/ 参考文章 甘特图配 ...