今天为大家带来最小生成树的第二种实现方式,比起kruskal来说,prim相对要复杂一些,在稠密图的表现中表现较好,最优情况下也是nlogn级别.

描述:

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。---百度百科
 
 

输入:
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
输出:
7
 
 
#include <bits/stdc++.h>
#define N 999999
using namespace std;
int dis[N],cnt=,m,out,n;
int now=,totw;
int head[N];
int u,v,w;
struct node
{
int v;
int next;
int w;
} e[N<<];
int vis[N];
inline void add(int u,int v,int w)
{
e[cnt].v=v;
e[cnt].next=head[u];
e[cnt].w=w;
head[u]=cnt;
cnt++;
}
inline int prim()
{
memset(dis,N,sizeof(dis)); for(int i=head[]; i; i=e[i].next)
{
dis[e[i].v]=min(dis[e[i].v],e[i].w);
}
while(out!=n-)
{ int minn=N;
vis[now]=;
for(int i=; i<=n; i++)
{
if(!vis[i]&&minn>dis[i])
{
minn=dis[i];
now=i;
}
}
totw+=minn;
for(int i=head[now]; i; i=e[i].next)
{
int v=e[i].v;
if(dis[v]>e[i].w&&!vis[v])
{
dis[v]=e[i].w;
}
}
out++;
}
return totw;
}
int main()
{
cin>>n>>m;
for(int i=; i<=m; i++)
{
cin>>u>>v>>w;
add(u,v,w);
add(v,u,w);
}
cout<<prim();
return ;
}

最小生成树(二)prim的更多相关文章

  1. Hihocoder 之 #1097 : 最小生成树一·Prim算法 (用vector二维 模拟邻接表,进行prim()生成树算法, *【模板】)

    #1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可 ...

  2. java实现最小生成树的prim算法和kruskal算法

    在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...

  3. 最小生成树的Prim算法

       构造最小生成树的Prim算法    假设G=(V,E)为一连通网,其中V为网中所有顶点的集合,E为网中所有带权边的集合.设置两个新的集合U和T,其中集合U用于存放G的最小生成树的顶点,集合T用于 ...

  4. hihocoder#1098 : 最小生成树二·Kruscal算法

    #1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...

  5. Hihocoder #1098 : 最小生成树二·Kruskal算法 ( *【模板】 )

    #1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...

  6. 数据结构(三十三)最小生成树(Prim、Kruskal)

    一.最小生成树的定义 一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边. 在一个网的所有生成树中,权值总和最小的生成树称为最小代价生成树(Minimum ...

  7. 最小生成树之 prim算法和kruskal算法(以 hdu 1863为例)

    最小生成树的性质 MST性质:设G = (V,E)是连通带权图,U是V的真子集.如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中, (u,v)的权c[u][v]最小,那么一定存在G的一棵最 ...

  8. MST最小生成树及Prim普鲁姆算法

    MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而 ...

  9. C++编程练习(10)----“图的最小生成树“(Prim算法、Kruskal算法)

    1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数 ...

随机推荐

  1. 推荐中的多任务学习-ESMM

    本文将介绍阿里发表在 SIGIR'18 的论文ESMM<Entire Space Multi-Task Model: An Effective Approach for Estimating Po ...

  2. 轻量级开源小程序SDK发车啦

    Magicodes.WxMiniProgram.Sdk 轻量级微信小程序SDK,支持.NET Framework以及.NET Core.目前已提供Abp模块的封装,支持开箱即用. Nuget 新的包 ...

  3. git submodule 管理子项目

    使用场景 拆分项目,当项目越来越大之后,我们希望 子模块 可以单独管理,并由 专门 的人去维护,这个时候只可以使用 git submodule 去完成. 常用命令 git clone <repo ...

  4. 解决apt-get命令出现的安装源错误

    首先linux环境下打开网页,输入上网账号密码,确保已经联网 直接安装软件或库的时候,在管理员模式下,在终端输入:apt-get install A可以自动安装A 有时会出现下面的安装源错误 这是因为 ...

  5. 牛客网上的ST阶跃表

    给你一个长为n的序列a和一个常数k 有m次询问,每次查询一个区间[l,r]内所有数最少分成多少个连续段,使得每段的和都 <= k 如果这一次查询无解,输出"Chtholly" ...

  6. 构造分组背包(CF)

    Ivan is a student at Berland State University (BSU). There are n days in Berland week, and each of t ...

  7. kubernetes concepts -- Termination Of Pod

    Pods are the smallest deployable units of computing that can be created and managed in Kubernetes. W ...

  8. Docker学习(三)认识Docker和常用命令

    Docker学习(三)认识Docker和常用命令 Docker体系结构 docker服务端,作为服务的提供方,核心进程 docker daemon,所有docker命令都是通过这个进程完成的 REST ...

  9. 安装numpy、matplotlib

    一.安装numpy 1.下载 https://pypi.org/project/numpy/#files 2.安装 pip3 install numpy-1.17.3-cp37-cp37m-win_a ...

  10. [bzoj4524] [loj#2047] [Cqoi2016] 伪光滑数

    Description 若一个大于 \(1\) 的整数 \(M\) 的质因数分解有 \(k\) 项,其最大的质因子为 \(Ak\) ,并且满足 \(Ak^K \leq N\) , \(Ak<12 ...