dp-最长公共子序列(LCS)
字符序列 与 字符字串的区别
序列是可以不连续的字符串 , 字串必须要是连续的 。
问题描述 :
给定两串字符串 abcde 和 acdf , 找出 2 串中相同的字符序列,观察知 相同的字符序列为 acd 。
方法一 : 暴力解决
对于一个长度为 n 的串 , 它的字串总共有 2^n 个,在用着 2^n 个字串与另一个长度为 m 的串一一比较 ,那么复杂度为 m * 2^n 。复杂度是指数级别的,显然会超时。
方法二 : 动态规划求解
两个串长度为 n 和 m , 建一个二维数组 , 用来记录状态 ,并且初始化数组内容为 0 ,m 和 n 分别从 0 开始 , m++ , n++ 循环
产生公共子序列的可能情况 :
两个序列 s1~sn 和 t1 ~ tm , 当 s i+1 == t i+1 时 , 在s1 ~ si 和 t1 ~ ti 的公共子序列末尾追加 s i+1 。
s1~si 和 t1~ti+1的公共序列。
s1~si+1 和 t1 ~ ti 的公共序列 。

代码示例 :
/*
* Author: renyi
* Created Time: 2017/8/31 8:33:36
* File Name: 1.cpp
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <time.h>
using namespace std;
const int maxint = -1u>>1;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int dp[10][10]; int main() {
char a[] = "abcdegghh";
char b[] = "cdefgh"; int len1 = strlen(a);
int len2 = strlen(b); for(int i = len1; i > 0; i--){
a[i] = a[i-1];
}
for (int i = len2; i > 0; i--){
b[i] = b[i-1];
} for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if (a[i] == b[j]){
dp[i][j] = dp[i-1][j-1]+1;
}
else dp[i][j] = Max(dp[i-1][j], dp[i][j-1]);
}
}
// printf("%d\n", dp[len1][len2]); // 公共字串的长度 /* for (int i = len1, j = len2; i > 0 && j > 0; ){ // 输出公共字串
if (a[i] == b[j]) {
printf("%c\t", a[i]);
i-- , j--;
}
else if(dp[i][j-1] >= dp[i-1][j]) j--;
else i--;
} */ int i = len1 , j = len2;
while (i && j) {
if ( a[i] == b[j]){
printf("%c\t" , a[i]);
i-- , j--;
}
else if (dp[i][j-1] >= dp[i-1][j]) j--;
else i--;
}
return 0;
}
dp-最长公共子序列(LCS)的更多相关文章
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 51nod 1006 最长公共子序列Lcs 【LCS/打印path】
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 51nod 1006:最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 每日一题-——最长公共子序列(LCS)与最长公共子串
最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...
- 51NOD 1006 最长公共子序列 Lcs 动态规划 DP 模板题 板子
给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最 ...
随机推荐
- [转]Win10下安装Linux子系统
工作以来一直DotNet系偏C/S, 接触Web开发的时间也不长, 现在主要偏向Web全栈方向, 一直对Linux系统心生向往, 夜深了娃睡了, 打开老旧的笔记本来折腾一下. 准备工作 控制面板 &g ...
- HDU 1828“Picture”(线段树+扫描线求矩形周长并)
传送门 •参考资料 [1]:算法总结:[线段树+扫描线]&矩形覆盖求面积/周长问题(HDU 1542/HDU 1828) •题意 给你 n 个矩形,求矩形并的周长: •题解1(两次扫描线) 周 ...
- java编译器优化和运行期优化
概述 最近在看jvm优化,总结一下学习的相关知识 (一)javac编译器 编译过程 1.解析与填充符号表过程 1).词法.语法分析 词法分析将源代码的字符流转变为标记集合,单个字符是程序编 ...
- 基于koa2操作mysql封装例子
新建better-mysql.js const mysql = require('mysql'); const config = require('../config/sqlConfig.js') l ...
- 编写jQuery插件的方法和注意点
编写jQuery插件的方法和注意点 插件的种类 jQuery的插件主要分为3种类型. 1. 封装对象方法的插件 这种插件是将对象方法封装起来,用于对通过选择器获取的jQuery对象进行操作,是最常见的 ...
- CodeForces - 922D Robot Vacuum Cleaner (贪心)
Pushok the dog has been chasing Imp for a few hours already. Fortunately, Imp knows that Pushok is a ...
- 查看当前android设备已安装的第三方包
查看当前android设备已安装的第三方包 adb shell pm list package -3 2 adb shell "getprop ro.build.version ...
- 什么是激励函数 (Activation Function)
relu sigmoid tanh 激励函数. 可以创立自己的激励函数解决自己的问题,只要保证这些激励函数是可以微分的. 只有两三层的神经网络,随便使用哪个激励函数都可以. 多层的不能随便选择,涉及梯 ...
- 使用 AT 指令进行 Socket 通信
BC26 支持使用 Socket 进行 TCP 和 UDP 协议通信,这两个协议也是 BC26 支持的众多通信协议的基础.本文讲解如何使用这两个协议与服务器端进行通信.在学习这篇文章前,请首先使用AT ...
- lombok优缺点
优点: 能通过注解的形式自动生成构造器.getter/setter.equals.hashcode.toString等方法,提高了一定的开发效率 让代码变得简洁,不用过多的去关注相应的方法 属性做修改 ...