The only difference between easy and hard versions is the constraints.

Vova likes pictures with kittens. The news feed in the social network he uses can be represented as an array of n

consecutive pictures (with kittens, of course). Vova likes all these pictures, but some are more beautiful than the others: the i-th picture has beauty ai

.

Vova wants to repost exactly x

pictures in such a way that:

  • each segment of the news feed of at least k
  • consecutive pictures has at least one picture reposted by Vova;
  • the sum of beauty values of reposted pictures is maximum possible.

For example, if k=1

then Vova has to repost all the pictures in the news feed. If k=2

then Vova can skip some pictures, but between every pair of consecutive pictures Vova has to repost at least one of them.

Your task is to calculate the maximum possible sum of values of reposted pictures if Vova follows conditions described above, or say that there is no way to satisfy all conditions.

Input

The first line of the input contains three integers n,k

and x (1≤k,x≤n≤5000

) — the number of pictures in the news feed, the minimum length of segment with at least one repost in it and the number of pictures Vova is ready to repost.

The second line of the input contains n

integers a1,a2,…,an (1≤ai≤109), where ai is the beauty of the i

-th picture.

Output

Print -1 if there is no way to repost some pictures to satisfy all the conditions in the problem statement.

Otherwise print one integer — the maximum sum of values of reposted pictures if Vova follows conditions described in the problem statement.

Examples
Input

Copy
5 2 3
5 1 3 10 1
Output

Copy
18
Input

Copy
6 1 5
10 30 30 70 10 10
Output

Copy
-1
Input

Copy
4 3 1
1 100 1 1
Output

Copy
100

题意 : 给你 n 个数字,要求从中选出 x 个数字,但任意连续的长度为 k 的区间中必须至少选择一个元素,询问所选择元素的最大的和是多少?

思路分析 :

  定义 dp[i][j] 表示前 i 个树中选择 j 个数的最大得分

代码示例 :

n = 200

#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f; ll n, k, x;
ll a[205];
ll dp[205][205]; void solve() {
memset(dp, -1*inf, sizeof(dp));
//printf("%lld ++++\n", dp[0][0]);
dp[0][0] = 0;
for(ll i = 1; i <= n; i++){
for(ll j = max(0ll, i-k); j <= i-1; j++){
for(ll f = 1; f <= x; f++){
dp[i][f] = max(dp[i][f], dp[j][f-1]+a[i]);
//prllf("++++ %d %d %d %d\n", i, j, f, dp[i][f]);
}
}
} ll ans = -1;
for(ll i = n; i > n-k; i--) ans = max(ans, dp[i][x]);
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> k >> x;
for(ll i = 1; i <= n; i++){
scanf("%lld", &a[i]);
}
solve();
return 0;
}

n = 5000

#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f;
typedef pair<ll, ll> P; // pos val
#define fi first
#define se second ll n, k, x;
ll a[5005];
deque<P>que[5005];
ll dp[5005][5005]; void solve() {
memset(dp, -1*inf, sizeof(dp));
dp[0][0] = 0;
que[0].push_back(P(0, 0));
ll ans = -1; for(ll i = 1; i <= n; i++){
ll pos = max(i-k, 0ll);
for(ll j = 1; j <= x; j++){
while(!que[j-1].empty() && que[j-1].front().fi < pos){
que[j-1].pop_front();
}
}
for(ll j = 1; j <= x; j++){
if (!que[j-1].empty()) {
ll p = que[j-1].front().fi;
ll val = que[j-1].front().se;
dp[i][j] = max(dp[i][j], dp[p][j-1]+a[i]);
//printf("^^^^^^^^^^^ %lld %lld %lld ++++ %lld %lld %lld\n", i, j, dp[i][j], p, j-1, dp[p][j-1]);
}
}
for(ll j = 1; j <= x; j++){
while(!que[j].empty() && dp[i][j] >= que[j].back().se) que[j].pop_back();
if (dp[i][j] > 0) que[j].push_back(P(i, dp[i][j]));
if (i > n-k) ans = max(ans, dp[i][j]);
}
//for(ll j = 1; j <= x; j++) {
//printf("++++ %lld %lld %lld\n", i, j, dp[i][j]);
//}
}
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> k >> x;
for(ll i = 1; i <= n; i++){
scanf("%lld", &a[i]);
}
solve();
return 0;
}

单调队列优化 dp的更多相关文章

  1. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  4. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  5. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  6. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  7. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  8. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

  9. BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP

    题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...

  10. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

随机推荐

  1. codeforce 381 div2

    ---恢复内容开始--- C: 由mex函数性质可知 ,对任意一个区间,都需要从0开始依次填1,2直到填满,那么,所有区间最小mex的最大值取决于最短区间长度k. 构造a数组之需要从0-k-1依次填数 ...

  2. git checkout简介

    原文: http://web.mit.edu/~thefred/MacData/afs/sipb/project/git/git-doc/git-checkout.html  git checkout ...

  3. WPF 使用 Composition API 做高性能渲染

    在 WPF 中很多小伙伴都会遇到渲染性能的问题,虽然 WPF 的渲染可以甩浏览器渲染几条街,但是还是支持不了游戏级的渲染.在 WPF 使用的 DX 只是优化等级为 9 和 DX 9 差不多的性能,微软 ...

  4. H3C DNS域名解析完整过程

  5. linux oops 消息

    大部分 bug 以解引用 NULL 指针或者使用其他不正确指针值来表现自己的. 此类 bug 通 常的输出是一个 oops 消息. 处理器使用的任何地址几乎都是一个虚拟地址, 通过一个复杂的页表结构映 ...

  6. java面试代码题

    1.阅读 Shape 和 Circle 两个类的定义.在序列化一个 Circle 的对象 circle 到 文件时,下面哪个字段会被保存到文件中? 文件时,下面哪个字段会被保存到文件中? A. nam ...

  7. 基于vs2015 SignalR开发的微信小程序使用websocket实现聊天功能

    一)前言 在微信小程上实现聊天功能,大致有三种方式:1)小程序云开发 2)购买第三方IM服务 3)使用自己的服务器自己开发. 这里重要讲使用自己的服务器自己开发,并且是基于vs的开发. 网上提供的解决 ...

  8. Android一般什么情况下会导致内存泄漏

    资料参考:https://blog.csdn.net/u011479990/article/details/78480091 内存泄漏的原因在于生命周期长的对象持有了生命周期短的对象的引用 内存泄漏形 ...

  9. elasticsearch基础知识杂记

    日常工作中用到的ES相关基础知识和总结.不足之处请指正,会持续更新. 1.集群的健康状况为 yellow 则表示全部主分片都正常运行(集群可以正常服务所有请求),但是 副本 分片没有全部处在正常状态. ...

  10. Laravel5.5 邮件发送报错:stream_socket_client()

    具体报错如下: stream_socket_client(): SSL operation failed with code 1. OpenSSL Error messages: error:1409 ...