单调队列优化 dp
The only difference between easy and hard versions is the constraints.
Vova likes pictures with kittens. The news feed in the social network he uses can be represented as an array of n
consecutive pictures (with kittens, of course). Vova likes all these pictures, but some are more beautiful than the others: the i-th picture has beauty ai
.
Vova wants to repost exactly x
pictures in such a way that:
- each segment of the news feed of at least k
- consecutive pictures has at least one picture reposted by Vova;
- the sum of beauty values of reposted pictures is maximum possible.
For example, if k=1
then Vova has to repost all the pictures in the news feed. If k=2
then Vova can skip some pictures, but between every pair of consecutive pictures Vova has to repost at least one of them.
Your task is to calculate the maximum possible sum of values of reposted pictures if Vova follows conditions described above, or say that there is no way to satisfy all conditions.
The first line of the input contains three integers n,k
and x (1≤k,x≤n≤5000
) — the number of pictures in the news feed, the minimum length of segment with at least one repost in it and the number of pictures Vova is ready to repost.
The second line of the input contains n
integers a1,a2,…,an (1≤ai≤109), where ai is the beauty of the i
-th picture.
Print -1 if there is no way to repost some pictures to satisfy all the conditions in the problem statement.
Otherwise print one integer — the maximum sum of values of reposted pictures if Vova follows conditions described in the problem statement.
5 2 3
5 1 3 10 1
18
6 1 5
10 30 30 70 10 10
-1
4 3 1
1 100 1 1
100
题意 : 给你 n 个数字,要求从中选出 x 个数字,但任意连续的长度为 k 的区间中必须至少选择一个元素,询问所选择元素的最大的和是多少?
思路分析 :
定义 dp[i][j] 表示前 i 个树中选择 j 个数的最大得分
代码示例 :
n = 200
#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f; ll n, k, x;
ll a[205];
ll dp[205][205]; void solve() {
memset(dp, -1*inf, sizeof(dp));
//printf("%lld ++++\n", dp[0][0]);
dp[0][0] = 0;
for(ll i = 1; i <= n; i++){
for(ll j = max(0ll, i-k); j <= i-1; j++){
for(ll f = 1; f <= x; f++){
dp[i][f] = max(dp[i][f], dp[j][f-1]+a[i]);
//prllf("++++ %d %d %d %d\n", i, j, f, dp[i][f]);
}
}
} ll ans = -1;
for(ll i = n; i > n-k; i--) ans = max(ans, dp[i][x]);
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> k >> x;
for(ll i = 1; i <= n; i++){
scanf("%lld", &a[i]);
}
solve();
return 0;
}
n = 5000
#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f;
typedef pair<ll, ll> P; // pos val
#define fi first
#define se second ll n, k, x;
ll a[5005];
deque<P>que[5005];
ll dp[5005][5005]; void solve() {
memset(dp, -1*inf, sizeof(dp));
dp[0][0] = 0;
que[0].push_back(P(0, 0));
ll ans = -1; for(ll i = 1; i <= n; i++){
ll pos = max(i-k, 0ll);
for(ll j = 1; j <= x; j++){
while(!que[j-1].empty() && que[j-1].front().fi < pos){
que[j-1].pop_front();
}
}
for(ll j = 1; j <= x; j++){
if (!que[j-1].empty()) {
ll p = que[j-1].front().fi;
ll val = que[j-1].front().se;
dp[i][j] = max(dp[i][j], dp[p][j-1]+a[i]);
//printf("^^^^^^^^^^^ %lld %lld %lld ++++ %lld %lld %lld\n", i, j, dp[i][j], p, j-1, dp[p][j-1]);
}
}
for(ll j = 1; j <= x; j++){
while(!que[j].empty() && dp[i][j] >= que[j].back().se) que[j].pop_back();
if (dp[i][j] > 0) que[j].push_back(P(i, dp[i][j]));
if (i > n-k) ans = max(ans, dp[i][j]);
}
//for(ll j = 1; j <= x; j++) {
//printf("++++ %lld %lld %lld\n", i, j, dp[i][j]);
//}
}
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> k >> x;
for(ll i = 1; i <= n; i++){
scanf("%lld", &a[i]);
}
solve();
return 0;
}
单调队列优化 dp的更多相关文章
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
- 【单调队列优化dp】 分组
[单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...
- [小明打联盟][斜率/单调队列 优化dp][背包]
链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...
- 单调队列以及单调队列优化DP
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...
- BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP
题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...
- P4381 [IOI2008]Island(基环树+单调队列优化dp)
P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...
随机推荐
- CSS滤镜 :灰色 ,方便站点哀悼
html { -webkit-filter: grayscale(100%); -moz-filter: grayscale(100%); -ms-filter: grayscale(100%); ...
- Python--day38--JoinableQueue解决生产者消费者模型
############################# # 在消费者这一端: #每次获取一个数据 #处理一个数据 #发送一个记号:标志一个数据被处理成功 #在生产者这一端: #每一次生成一个数据 ...
- Callable Objects
We learned in 7.11 that there are "array-like" objects that are not true arrays but can be ...
- P1029 栈的基础操作
题目描述 现在给你一个栈,它一开始是空的,你需要模拟栈的操作.栈的操作包括如下: "push x":将元素 x 放入栈中,其中x是一个int范围内的整数: "pop&qu ...
- 学习better-scroll与vue结合使用
better-scroll,移动端滚动场景需求的插件 例: 做一个上下滚动,左右两边关联(滑动右侧左侧对应的类别显示高亮,点击左侧的类别名称右侧滑动到对应的位置) 如图: 分析:滑动右侧的时候左侧对应 ...
- H3C配置console口密码
方法一: [H3C]user-interface console 0 [H3C-ui-console0]authentication-mode password [H3C-ui-console0]se ...
- 牛客小白月赛15A 斑羚飞渡
链接:https://ac.nowcoder.com/acm/contest/917/A 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K,其他语言262144K 64b ...
- react-native-swiper使用时候的小坑
react-native版本:0.61.1 react-native-swiper版本:1.5.14 当时第一次使用时候直接粘贴的别人博客的教程代码,只修改了swiper里面的元素,结果发现不能切换, ...
- git常用常用操作指令
GIT操作 1:git init 初始化空的仓库,会在当前文件夹生成一个隐藏.git的文件夹,相当于一个仓库. 2:提交代码的流程:工作代码区-->暂存区 -->主仓库 -->服务器 ...
- mapper的配置文件
<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapperPUBLIC "-// ...