The only difference between easy and hard versions is the constraints.

Vova likes pictures with kittens. The news feed in the social network he uses can be represented as an array of n

consecutive pictures (with kittens, of course). Vova likes all these pictures, but some are more beautiful than the others: the i-th picture has beauty ai

.

Vova wants to repost exactly x

pictures in such a way that:

  • each segment of the news feed of at least k
  • consecutive pictures has at least one picture reposted by Vova;
  • the sum of beauty values of reposted pictures is maximum possible.

For example, if k=1

then Vova has to repost all the pictures in the news feed. If k=2

then Vova can skip some pictures, but between every pair of consecutive pictures Vova has to repost at least one of them.

Your task is to calculate the maximum possible sum of values of reposted pictures if Vova follows conditions described above, or say that there is no way to satisfy all conditions.

Input

The first line of the input contains three integers n,k

and x (1≤k,x≤n≤5000

) — the number of pictures in the news feed, the minimum length of segment with at least one repost in it and the number of pictures Vova is ready to repost.

The second line of the input contains n

integers a1,a2,…,an (1≤ai≤109), where ai is the beauty of the i

-th picture.

Output

Print -1 if there is no way to repost some pictures to satisfy all the conditions in the problem statement.

Otherwise print one integer — the maximum sum of values of reposted pictures if Vova follows conditions described in the problem statement.

Examples
Input

Copy
5 2 3
5 1 3 10 1
Output

Copy
18
Input

Copy
6 1 5
10 30 30 70 10 10
Output

Copy
-1
Input

Copy
4 3 1
1 100 1 1
Output

Copy
100

题意 : 给你 n 个数字,要求从中选出 x 个数字,但任意连续的长度为 k 的区间中必须至少选择一个元素,询问所选择元素的最大的和是多少?

思路分析 :

  定义 dp[i][j] 表示前 i 个树中选择 j 个数的最大得分

代码示例 :

n = 200

#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f; ll n, k, x;
ll a[205];
ll dp[205][205]; void solve() {
memset(dp, -1*inf, sizeof(dp));
//printf("%lld ++++\n", dp[0][0]);
dp[0][0] = 0;
for(ll i = 1; i <= n; i++){
for(ll j = max(0ll, i-k); j <= i-1; j++){
for(ll f = 1; f <= x; f++){
dp[i][f] = max(dp[i][f], dp[j][f-1]+a[i]);
//prllf("++++ %d %d %d %d\n", i, j, f, dp[i][f]);
}
}
} ll ans = -1;
for(ll i = n; i > n-k; i--) ans = max(ans, dp[i][x]);
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> k >> x;
for(ll i = 1; i <= n; i++){
scanf("%lld", &a[i]);
}
solve();
return 0;
}

n = 5000

#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f;
typedef pair<ll, ll> P; // pos val
#define fi first
#define se second ll n, k, x;
ll a[5005];
deque<P>que[5005];
ll dp[5005][5005]; void solve() {
memset(dp, -1*inf, sizeof(dp));
dp[0][0] = 0;
que[0].push_back(P(0, 0));
ll ans = -1; for(ll i = 1; i <= n; i++){
ll pos = max(i-k, 0ll);
for(ll j = 1; j <= x; j++){
while(!que[j-1].empty() && que[j-1].front().fi < pos){
que[j-1].pop_front();
}
}
for(ll j = 1; j <= x; j++){
if (!que[j-1].empty()) {
ll p = que[j-1].front().fi;
ll val = que[j-1].front().se;
dp[i][j] = max(dp[i][j], dp[p][j-1]+a[i]);
//printf("^^^^^^^^^^^ %lld %lld %lld ++++ %lld %lld %lld\n", i, j, dp[i][j], p, j-1, dp[p][j-1]);
}
}
for(ll j = 1; j <= x; j++){
while(!que[j].empty() && dp[i][j] >= que[j].back().se) que[j].pop_back();
if (dp[i][j] > 0) que[j].push_back(P(i, dp[i][j]));
if (i > n-k) ans = max(ans, dp[i][j]);
}
//for(ll j = 1; j <= x; j++) {
//printf("++++ %lld %lld %lld\n", i, j, dp[i][j]);
//}
}
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> k >> x;
for(ll i = 1; i <= n; i++){
scanf("%lld", &a[i]);
}
solve();
return 0;
}

单调队列优化 dp的更多相关文章

  1. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  4. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  5. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  6. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  7. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  8. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

  9. BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP

    题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...

  10. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

随机推荐

  1. Codeforces Round #186 (Div. 2)

    A. Ilya and Bank Account 模拟. B. Ilya and Queries 前缀和. C. Ilya and Matrix 考虑每个元素的贡献. 边长为\(2^n\)时,贡献为最 ...

  2. HDU 6709“Fishing Master”(贪心+优先级队列)

    传送门 •参考资料 [1]:2019CCPC网络选拔赛 H.Fishing Master(思维+贪心) •题意 池塘里有 n 条鱼,捕捉一条鱼需要花费固定的 k 时间: 你有一个锅,每次只能煮一条鱼, ...

  3. There is no PasswordEncoder mapped for the id "null"的解决办法

    今日在SpringBoot项目中使用 Spring Security ,登录时发现报500错,报错信息如下: There is no PasswordEncoder mapped for the id ...

  4. C# 在 8.0 对比 string 和 string? 的类型

    在 C# 8.0 的时候提供了可空字符串的判断,但是可空字符串和字符串的类型是不是不同的? 打开 VisualStudio 2019 这时就不能再使用 VisualStudio 2017 因为不支持 ...

  5. win10 uwp 解决 SerialDevice.FromIdAsync 返回空

    调用 SerialDevice.FromIdAsync 可能返回空,因为没有设置 package.appmanifest 可以使用端口 打开 package.appmanifest 文件添加下面代码 ...

  6. 【74.00%】【codeforces 747A】Display Size

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  7. new Date(2019-08-24 12:30:00)和new Date(2019-08-29T02:15:08.000+0000)在ios的兼容NAN问题

    new Date()在安卓和pc端上正常显示,但是却在ios上显示 NAN的问题 正常写法: var time = new Date("2019-08-24 12:30:00"); ...

  8. Javascript中那些你不知道的事之-- false、0、null、undefined和空字符串

    话不多说直接进入主题:(如果有写的不对的地方欢迎指正) 我们先来看看他们的类型分别是什么: typeof类型检测结果 结论:false是布尔类型对象,0是数字类型对象,null是object对象,un ...

  9. Openstack生产环境部署(一)

  10. 定位、识别;目标检测,FasterRCNN

    定位: 针对分类利用softmax损失函数,针对定位利用L2损失函数(或L1.回归损失等) 人关节点检测 针对连续变量和离散变量需要采用不同种类的损失函数. 识别: 解决方案: 1.利用滑动窗口,框的 ...