图解kubernetes scheduler基于map/reduce模式实现优选阶段
优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴
1. 设计基础
1.1 两阶段: 单点与聚合
在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合
在单点阶段,会根据当前算法针对单个node计算
在聚合阶段,则会根据当前单点阶段计算完成后,来进行聚合
1.2 并行: 节点与算法
单点和聚合两阶段在计算的时候,都是并行的,但是对象则不同,其中单点阶段并行是针对单个node的计算,而聚合阶段则是针对算法级别的计算,通过这种设计分离计算,从而避免多goroutine之间数据竞争,无锁加速优选的计算
1.3 map与reduce
而map与reduce则是针对一个上面并行的两种具体实现,其中map中负责单node打分,而reduce则是针对map阶段的打分进行聚合后,根据汇总的结果进行二次打分计算
1.4 weight
map/reduce阶段都是通过算法计算,如果我们要进行自定义的调整,针对单个算法,我们可以调整其在预选流程中的权重,从而进行定制自己的预选流程
1.5 随机分布
当进行优先级判断的时候,肯定会出现多个node优先级相同的情况,在优选节点的时候,会进行随机计算,从而决定是否用当前优先级相同的node替换之前的最合适的node
2. 源码分析
优选的核心流程主要是在PrioritizeNodes中,这里只介绍其关键的核心数据结构设计
2.1 无锁计算结果保存
无锁计算结果的保存主要是通过下面的二维数组实现, 如果要存储一个算法针对某个node的结果,其实只需要通过两个索引即可:算法索引和节点索引,同理如果我吧针对单个node的索引分配给一个goroutine,则其去其他的goroutine则就可以并行计算
// 在计算的时候,会传入nodes []*v1.Node的数组,存储所有的节点,节点索引主要是指的该部分
results := make([]schedulerapi.HostPriorityList, len(priorityConfigs), len(priorityConfigs))
2.2 基于节点索引的Map计算
之前在预选阶段介绍过ParallelizeUntil函数的实现,其根据传入的数量来生成计算索引,放入chan中,后续多个goroutine从chan中取出数据直接进行计算即可
workqueue.ParallelizeUntil(context.TODO(), 16, len(nodes), func(index int) {
// 根据节点和配置的算法进行计算
nodeInfo := nodeNameToInfo[nodes[index].Name]
// 获取算法的索引
for i := range priorityConfigs {
if priorityConfigs[i].Function != nil {
continue
}
var err error
// 通过节点索引,来进行针对单个node的计算结果的保存
results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
if err != nil {
appendError(err)
results[i][index].Host = nodes[index].Name
}
}
})
2.3 基于算法索引的Reduce计算
基于算法的并行,则是为每个算法的计算都启动一个goroutine,每个goroutine通过算法索引来进行该算法的所有map阶段的结果的读取,并进行计算,后续结果仍然存储在对应的位置
// 计算策略的分值
for i := range priorityConfigs {
if priorityConfigs[i].Reduce == nil {
continue
}
wg.Add(1)
go func(index int) {
defer wg.Done()
if err := priorityConfigs[index].Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {
appendError(err)
}
if klog.V(10) {
for _, hostPriority := range results[index] {
klog.Infof("%v -> %v: %v, Score: (%d)", util.GetPodFullName(pod), hostPriority.Host, priorityConfigs[index].Name, hostPriority.Score)
}
}
}(i)
}
// Wait for all computations to be finished.
wg.Wait()
2.4 优先级打分结果统计
根据之前的map/reduce阶段,接下来就是将针对所有node的所有算法计算结果进行累加即可
// Summarize all scores.
result := make(schedulerapi.HostPriorityList, 0, len(nodes))
for i := range nodes {
result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})
// 便利所有的算法配置
for j := range priorityConfigs {
result[i].Score += results[j][i].Score * priorityConfigs[j].Weight
}
for j := range scoresMap {
result[i].Score += scoresMap[j][i].Score
}
}
2.5 根据优先级随机筛选host
这里的随机筛选是指的当多个host优先级相同的时候,会有一定的概率用当前的node替换之前的优先级相等的node(到目前为止的优先级最高的node), 其主要通过cntOfMaxScore和rand.Intn(cntOfMaxScore)来进行实现
func (g *genericScheduler) selectHost(priorityList schedulerapi.HostPriorityList) (string, error) {
if len(priorityList) == 0 {
return "", fmt.Errorf("empty priorityList")
}
maxScore := priorityList[0].Score
selected := priorityList[0].Host
cntOfMaxScore := 1
for _, hp := range priorityList[1:] {
if hp.Score > maxScore {
maxScore = hp.Score
selected = hp.Host
cntOfMaxScore = 1
} else if hp.Score == maxScore {
cntOfMaxScore++
if rand.Intn(cntOfMaxScore) == 0 {
// Replace the candidate with probability of 1/cntOfMaxScore
selected = hp.Host
}
}
}
return selected, nil
}
3. 设计总结
优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴
本系列纯属个人臆测仅供参考,如果有看出错误的大佬欢迎指正
微信号:baxiaoshi2020
关注公告号阅读更多源码分析文章
更多文章关注 www.sreguide.com
本文由博客一文多发平台 OpenWrite 发布
图解kubernetes scheduler基于map/reduce模式实现优选阶段的更多相关文章
- 图解kubernetes scheduler基于map/reduce无锁设计的优选计算
优选阶段通过分离计算对象来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来 ...
- 图解 kubernetes scheduler 架构设计系列-初步了解
资源调度基础 scheudler是kubernetes中的核心组件,负责为用户声明的pod资源选择合适的node,同时保证集群资源的最大化利用,这里先介绍下资源调度系统设计里面的一些基础概念 基础任务 ...
- Map Reduce和流处理
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由@从流域到海域翻译,发表于腾讯云+社区 map()和reduce()是在集群式设备上用来做大规模数据处理的方法,用户定义一个特定的映射 ...
- 机器学习等知识--- map/reduce, python 读json数据。。。
map/ reduce 了解: 简单介绍map/reduce 模式: http://www.csdn.net/article/2013-01-07/2813477-confused-about-map ...
- 基于python的《Hadoop权威指南》一书中气象数据下载和map reduce化数据处理及其可视化
文档内容: 1:下载<hadoop权威指南>中的气象数据 2:对下载的气象数据归档整理并读取数据 3:对气象数据进行map reduce进行处理 关键词:<Hadoop权威指南> ...
- 资深实践篇 | 基于Kubernetes 1.61的Kubernetes Scheduler 调度详解
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:腾讯云容器服务团队 源码为 k8s v1.6.1 版本,github 上对应的 commit id 为 b0b7a323cc5a4a ...
- 分布式基础学习(2)分布式计算系统(Map/Reduce)
二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很 ...
- 分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)
二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程 ...
- 图解kubernetes调度器SchedulingQueue核心源码实现
SchedulingQueue是kubernetes scheduler中负责进行等待调度pod存储的对,Scheduler通过SchedulingQueue来获取当前系统中等待调度的Pod,本文主要 ...
随机推荐
- 高并发下载tomcat下的文件时,发生java.net.SocketException: Connection reset解决方案
(1)问题产生:使用500个线程并发下载tomcat工程中的一个文件时,服务器出现java.net.SocketException: Connection reset异常, 客户端出现connect ...
- H3C 环路避免机制二:水平分割
- P1007 N钱M鸡问题
题目描述 已知公鸡 \(5\) 元钱一只,母鸡 \(3\) 元钱一只,小鸡 \(3\) 只 \(1\) 元钱. 告诉你一个整数 \(n(1 \le n \le 1000)\) ,你现在要花 \(n\) ...
- Vue2.0 Vue.set的使用
原文链接: https://blog.csdn.net/qq_30455841/article/details/78666571
- 圆角效果 border-radius——阴影 box-shadow——为边框应用图片 border-image
1.圆角效果 border-radius border-radius: 5px 4px 3px 2px; /* 四个半径值分别是左上角.右上角.右下角和左下角,顺时针 */ 不要以为border-ra ...
- SNOI2019
题解: t1: 想了一会才会.. 以为是啥最小表示法之类的..然后这个我又不会 其实只要考虑一下a[i],a[i+1]之间的大小关系就行了 t2: 好像和题解不太一样.. 我的做法比较麻烦.. 枚举A ...
- Scala的正则表达式
想使用scala的正则表达式,需要首先导入 import scala.util.matching.Regex 然后就可以使用了,实例如下: val pattern = new Regex(" ...
- eclipse中如何配置maven
1.首先需要在自己电脑中安装Maven,下载maven的路径:http://maven.apache.org/download.cgi 2.我们把下载好的文件解压到自己电脑的任意一个盘符中去,我的是e ...
- 用Robot Framework+python来测试基于socket通讯的C/S系统(网络游戏)
项目终于换了方案,改用socket来实现而不是之前的http了,所以测试工具就不能用以前的了,因为测试人手少,逼不得已的必须要挖掘更多的自动化方案来弥补.于是先研究了下python的socket解决方 ...
- 【题解】CTSC1999家园(网络流)
CTSC1999家园 建模方法类似我NOI2019网络同步赛我的T1写法[[题解]NOI2019Route](70分) 问题的焦点是:空间时间载具. 考虑如何击破时间限制,可以对每个点关于每个时刻建立 ...