【BZOJ4161】Shlw loves matrixI
题目描述
给定数列 {hn}前k项,其后每一项满足
hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k)
其中 a1,a2...ak 为给定数列。请计算 h(n),并将结果对 1000000007 取模输出。
解法
一个显然的思路就是矩阵乘法,但这样的话显然超时。
实际上,我们还可以继续对这个矩阵乘法进行优化。
首先,由于这是常系数齐次线性递推式,简单来说就是:
\]
然后,我们需要引进特征多项式这个概念。
对于一个矩阵\(A\),它的特征多项式是\(f(x)=|Ix-A|\)
把行列式展开之后得,\(f(x)=|Ix-A|=x^K-\sum_{i=1}^K a_i*x^{K-i}\)
由Cayley-hamilton定理,那么我们知道\(f(A)=0\)
然后就能知道一个关键的式子:
\]
然后由于\(A^i\)都能表示成\(A^1,A^2,....,A^K\)的线性组合,
所以现在矩阵乘法直接使用\(O(K^2)\)的卷积即可。
当得到了\(A^n=\sum_{i=1}^K c_i*A^i\)之后,我们乘上题目给的向量h。
那么就会有\(\sum_{i=1}^K c_i*A^i*h_K\),即\(Ans=\sum_{i=1}^K c_i*h_{K+i}\)。
复杂度就被优化为\(O(K^2 log n)\)
Code
#include<bits/stdc++.h>
#define ll long long
#define fo(i,x,y) for(int i=x;i<=y;i++)
#define fd(i,x,y) for(int i=x;i>=y;i--)
using namespace std;
const int maxn=4007,mo=1e9+7;
int n,K;
int a[maxn],h[maxn],f[maxn];
int Ans;
void Init(){
scanf("%d%d",&n,&K);
fo(i,1,K) scanf("%d",&a[i]);
memcpy(f,a,sizeof a);
fo(i,1,K) scanf("%d",&h[i]);
}
#define PLUS(x,y) (x)=((x)+(y))%mo
void mult(int *a,int *b){
static int c[maxn];
memset(c,0,sizeof c);
fo(i,1,K)
fo(j,1,K)
PLUS(c[i+j],1ll*a[i]*b[j]);
fd(i,2*K,K+1)
fo(j,1,K)
PLUS(c[i-j],1ll*c[i]*f[j]);
memcpy(a,c,sizeof c);
}
void qPower(int x){
bool bz=false;
static int b[maxn];
b[1]=1;
while (x){
if (x&1){
if (bz) mult(a,b);
else{
bz=true;
memcpy(a,b,sizeof b);
}
}
mult(b,b);
x>>=1;
}
}
void Solve(){
n++;
fo(i,K+1,2*K) fo(j,1,K) PLUS(h[i],1ll*h[i-j]*a[j]);
if (n<=2*K){
Ans=h[n];
return;
}
qPower(n-K);
Ans=0;
fo(i,1,K) PLUS(Ans,1ll*a[i]*h[i+K]);
}
void Print(){
Ans=(Ans+mo)%mo;
printf("%d\n",Ans);
}
int main(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
Init();
Solve();
Print();
return 0;
}
【BZOJ4161】Shlw loves matrixI的更多相关文章
- 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)
[BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...
- 【Luogu3602】Koishi Loves Segments(贪心)
[Luogu3602]Koishi Loves Segments(贪心) 题面 洛谷 题解 离散区间之后把所有的线段挂在左端点上,从左往右扫一遍. 对于当前点的限制如果不满足显然会删掉右端点最靠右的那 ...
- 【BZOJ3561】DZY Loves Math VI (数论)
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...
- 【CF446D】DZY Loves Games 高斯消元+矩阵乘法
[CF446D]DZY Loves Games 题意:一张n个点m条边的无向图,其中某些点是黑点,1号点一定不是黑点,n号点一定是黑点.问从1开始走,每次随机选择一个相邻的点走过去,经过恰好k个黑点到 ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- 【BZOJ3512】DZY Loves Math IV(杜教筛)
[BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...
- 【BZOJ3309】DZY Loves Math 解题报告
[BZOJ3309]DZY Loves Math Description 对于正整数\(n\),定义\(f(n)\)为\(n\)所含质因子的最大幂指数.例如\(f(1960)=f(2^3×5^1×7^ ...
- 【BZOJ3316】JC loves Mkk 分数规划+单调队列
[BZOJ3316]JC loves Mkk Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整 ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
随机推荐
- Vue Virtual Dom 和 Diff原理(面试必备) 极简版
我又来了,这是Vue面试三板斧的最后一招,当然也是极其简单了,先说Virtual Dom,来一句概念: 用js来模拟DOM中的节点.传说中的虚拟DOM. 再来一张图: 是不是一下子秒懂 没懂再来一张 ...
- (转)iframe 高度100%时,出现垂直滚动条
问题 需求是这样的,iframe在一个div中,并且iframe高度与div一样,所以设置了iframe高度是100%,结果div出现了滚动条,在排除了padding.margin的因素外,还是有滚动 ...
- Assert(断言) 的用法
Assert Assert是断言的意思,头文件为assert.h, assert是一个宏 功 能: 测试一个条件并可能使程序终止 用 法: void assert(int test); 在单元测试中经 ...
- typedef void (*funcptr)(void) typedef void (*PFV)(); typedef int32_t (*PFI)();
看到以下代码,不明白查了一下: /** Pointer to Function returning Void (any number of parameters) */ typedef void (* ...
- node-webkit笔记
两个月前给一个运营站点做了个封皮,今天再做竟然忘了怎么搞了...为之文以志. 流程参考: http://www.cnblogs.com/2050/p/3543011.html 相关命令: copy / ...
- Git合并时遇到冲突或错误后取消合并
当合并分支时遇到错误或者冲突,分支旁边会多出“|MERGING”这个东西 有这个状态存在时,会导致后面想要再合并的时候提示如下 所以需要先取消这次合并,使用“git merge --abort”命令
- 初识OpenCV-Python - 008: 形态转换
本节学习了图片的形态转换,即利用函数和图像的前景色和背景色去侵蚀或者扩张图像图形. import cv2import numpy as npfrom matplotlib import pyplot ...
- SpringBoot集成JPA根据实体类自动生成表
数据库是mysql,在application.properties中的写法如下: 原来配置这样的时候确实可以生产表的 #spring.jpa.hibernate.ddl-auto=update 多方查 ...
- JS规则 我与你同在(逻辑与操作符)数学中的“b大于a,b小于c”是“a<b<c”,那么在JavaScript中可以用&&表示
我与你同在(逻辑与操作符) 数学里面的"a>b",在JavaScript中还表示为a>b:数学中的"b大于a,b小于c"是"a<b& ...
- python csv write 乱码
参考 : https://www.zhihu.com/question/34201726 1.使用utf_8_sig with open('d:/file.csv', 'w', encoding='u ...