题目描述

给定数列 {hn}前k项,其后每一项满足

hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k)

其中 a1,a2...ak 为给定数列。请计算 h(n),并将结果对 1000000007 取模输出。

解法

一个显然的思路就是矩阵乘法,但这样的话显然超时。

实际上,我们还可以继续对这个矩阵乘法进行优化。

首先,由于这是常系数齐次线性递推式,简单来说就是:

\[f_i=\sum_{j=1}^k a_i*f_{i-j}
\]

然后,我们需要引进特征多项式这个概念。

对于一个矩阵\(A\),它的特征多项式是\(f(x)=|Ix-A|\)

把行列式展开之后得,\(f(x)=|Ix-A|=x^K-\sum_{i=1}^K a_i*x^{K-i}\)

由Cayley-hamilton定理,那么我们知道\(f(A)=0\)

然后就能知道一个关键的式子:

\[A^K=\sum_{i=1}^K a_i*A^{K-i}
\]

然后由于\(A^i\)都能表示成\(A^1,A^2,....,A^K\)的线性组合,

所以现在矩阵乘法直接使用\(O(K^2)\)的卷积即可。

当得到了\(A^n=\sum_{i=1}^K c_i*A^i\)之后,我们乘上题目给的向量h。

那么就会有\(\sum_{i=1}^K c_i*A^i*h_K\),即\(Ans=\sum_{i=1}^K c_i*h_{K+i}\)。

复杂度就被优化为\(O(K^2 log n)\)

Code

#include<bits/stdc++.h>
#define ll long long
#define fo(i,x,y) for(int i=x;i<=y;i++)
#define fd(i,x,y) for(int i=x;i>=y;i--)
using namespace std; const int maxn=4007,mo=1e9+7; int n,K;
int a[maxn],h[maxn],f[maxn];
int Ans; void Init(){
scanf("%d%d",&n,&K);
fo(i,1,K) scanf("%d",&a[i]);
memcpy(f,a,sizeof a);
fo(i,1,K) scanf("%d",&h[i]);
} #define PLUS(x,y) (x)=((x)+(y))%mo
void mult(int *a,int *b){
static int c[maxn];
memset(c,0,sizeof c);
fo(i,1,K)
fo(j,1,K)
PLUS(c[i+j],1ll*a[i]*b[j]);
fd(i,2*K,K+1)
fo(j,1,K)
PLUS(c[i-j],1ll*c[i]*f[j]);
memcpy(a,c,sizeof c);
} void qPower(int x){
bool bz=false;
static int b[maxn];
b[1]=1;
while (x){
if (x&1){
if (bz) mult(a,b);
else{
bz=true;
memcpy(a,b,sizeof b);
}
}
mult(b,b);
x>>=1;
}
}
void Solve(){
n++;
fo(i,K+1,2*K) fo(j,1,K) PLUS(h[i],1ll*h[i-j]*a[j]);
if (n<=2*K){
Ans=h[n];
return;
}
qPower(n-K);
Ans=0;
fo(i,1,K) PLUS(Ans,1ll*a[i]*h[i+K]);
} void Print(){
Ans=(Ans+mo)%mo;
printf("%d\n",Ans);
} int main(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
Init();
Solve();
Print();
return 0;
}

【BZOJ4161】Shlw loves matrixI的更多相关文章

  1. 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)

    [BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...

  2. 【Luogu3602】Koishi Loves Segments(贪心)

    [Luogu3602]Koishi Loves Segments(贪心) 题面 洛谷 题解 离散区间之后把所有的线段挂在左端点上,从左往右扫一遍. 对于当前点的限制如果不满足显然会删掉右端点最靠右的那 ...

  3. 【BZOJ3561】DZY Loves Math VI (数论)

    [BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...

  4. 【CF446D】DZY Loves Games 高斯消元+矩阵乘法

    [CF446D]DZY Loves Games 题意:一张n个点m条边的无向图,其中某些点是黑点,1号点一定不是黑点,n号点一定是黑点.问从1开始走,每次随机选择一个相邻的点走过去,经过恰好k个黑点到 ...

  5. 【BZOJ3309】DZY Loves Math(莫比乌斯反演)

    [BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...

  6. 【BZOJ3512】DZY Loves Math IV(杜教筛)

    [BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...

  7. 【BZOJ3309】DZY Loves Math 解题报告

    [BZOJ3309]DZY Loves Math Description 对于正整数\(n\),定义\(f(n)\)为\(n\)所含质因子的最大幂指数.例如\(f(1960)=f(2^3×5^1×7^ ...

  8. 【BZOJ3316】JC loves Mkk 分数规划+单调队列

    [BZOJ3316]JC loves Mkk Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整 ...

  9. 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)

    [BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...

随机推荐

  1. mysql 函数和存储过程的区别

    >一般来说,存储过程实现的功能要复杂一点,而函数的实现的功能针对性比较强.存储过程,功能强大,可以执行包括修改表等一系列数据库操作:用户定义函数不能用于执行一组修改全局数据库状态的操作. > ...

  2. (转)Android开发把项目打包成apk

    转:http://blog.csdn.net/luoyin22/article/details/7862742 做完一个Android项目之后,如何才能把项目发布到Internet上供别人使用呢?我们 ...

  3. Quartz 定时任务配置(spring中)

    <!-- Quartz -->    <bean name="task" class="com.geostar.geosmarter.nodemanag ...

  4. nginx下Thinkphp 隐藏index.php

    thinkphp config配置: 'URL_MODEL' => '2', //URL模式 nginx rewrite配置: location / { if (!-e $request_fil ...

  5. Eclipse 连接MySql数据库总结

    Eclipse 连接MySql数据库总结 一.在MySql中创建数据库,并创建表,向表中插入数据 1.创建数据库 create database select_test 2.创建表 create ta ...

  6. RunLoop运行循环机制

    http://www.jianshu.com/p/0be6be50e461 基本概念 进程 进程是指在系统中正在运行的一个应用程序,而且每个进程之间是独立的,它们都运行在其专用且受保护的内存空间内,比 ...

  7. ubuntu解压/压缩rar文件

    一般通过默认安装的ubuntu是不能解压rar文件的,只有在安装了rar解压工具之后,才可以解压.其实在ubuntu下安装rar解压工具是非常简单的,只需要两个步骤就可以迅速搞定.ubuntu 下ra ...

  8. AutoIt自动化编程(2)【转】

    注意:窗口标题和窗口文本参数总是对大小写敏感的. 1.等待窗口系列命令/函数 AHK和AU3都提供了用法类似的一组窗口等待命令/函数:WinWait/WinWaitActive/WinWaitClos ...

  9. Tensortflow安装

    1.  CMD里面 pip install --upgrade --ignore-installed tensorflow

  10. QQ交流群