「JSOI2015」symmetry

传送门

我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈希,这样我们就可以通过哈希,在 \(O(n ^ 2)\) 时间内判断原正方形中是否存在某一类型的某一大小的子正方形。

但是如果我们枚举边长,复杂度就会达到 \(O(n ^ 3)\) 级别,显然过不了。

考虑优化:我们发现对于任意一种类型的正方形,它把最外面一圈去掉之后还是满足原来的性质,所以我们可以二分来求。需要注意的是我们不好同时计算奇数边长和偶数边长的正方形,所以要二分两次。

参考代码:

#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline T max(T a, T b) { return a > b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
} typedef unsigned long long ull;
const int _ = 502;
const ull base1 = 19491001, base2 = 19260817;
int n; ull pw1[_], pw2[_], h[7][_][_]; inline ull gethash(int k, int x1, int y1, int x2, int y2) {
int w = x2 - x1 + 1;
return h[k][x2][y2] - h[k][x1 - 1][y2] * pw1[w] - h[k][x2][y1 - 1] * pw2[w] + h[k][x1 - 1][y1 - 1] * pw1[w] * pw2[w];
} inline bool check_90(int x1, int y1, int x2, int y2) {
return gethash(0, x1, y1, x2, y2) == gethash(5, y1, n - x2 + 1, y2, n - x1 + 1);
} inline bool check_180(int x1, int y1, int x2, int y2) {
return gethash(0, x1, y1, x2, y2) == gethash(6, n - x2 + 1, n - y2 + 1, n - x1 + 1, n - y1 + 1);
} inline bool check_diag(int x1, int y1, int x2, int y2) {
return gethash(0, x1, y1, x2, y2) == gethash(1, x1, n - y2 + 1, x2, n - y1 + 1)
|| gethash(0, x1, y1, x2, y2) == gethash(2, n - x2 + 1, y1, n - x1 + 1, y2)
|| gethash(0, x1, y1, x2, y2) == gethash(3, y1, x1, y2, x2)
|| gethash(0, x1, y1, x2, y2) == gethash(4, n - y2 + 1, n - x2 + 1, n - y1 + 1, n - x1 + 1);
} inline bool check_4(int x1, int y1, int x2, int y2) {
return check_180(x1, y1, x2, y2) && check_diag(x1, y1, x2, y2);
} inline bool check_8(int x1, int y1, int x2, int y2) {
return check_90(x1, y1, x2, y2) && check_diag(x1, y1, x2, y2);
} template < class T > inline bool check(T f, int x) {
for (rg int i = x; i <= n; ++i)
for (rg int j = x; j <= n; ++j)
if (f(i - x + 1, j - x + 1, i, j)) return 1;
return 0;
} template < class T > inline int solve(T f) {
int res = 0, l, r, mid;
l = 0, r = (n - 1) >> 1;
while (l < r) {
mid = (l + r + 1) >> 1;
if (check(f, mid << 1 | 1)) l = mid; else r = mid - 1;
}
res = max(res, l << 1 | 1);
l = 1, r = n >> 1;
while (l < r) {
mid = (l + r + 1) >> 1;
if (check(f, mid << 1)) l = mid; else r = mid - 1;
}
res = max(res, l << 1);
return res;
} int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n);
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= n; ++j) {
scanf("%1d", &h[0][i][j]);
h[1][i][n - j + 1] = h[0][i][j];
h[2][n - i + 1][j] = h[0][i][j];
h[3][j][i] = h[0][i][j];
h[4][n - j + 1][n - i + 1] = h[0][i][j];
h[5][j][n - i + 1] = h[0][i][j];
h[6][n - i + 1][n - j + 1] = h[0][i][j];
}
pw1[0] = 1; for (rg int i = 1; i <= n; ++i) pw1[i] = pw1[i - 1] * base1;
pw2[0] = 1; for (rg int i = 1; i <= n; ++i) pw2[i] = pw2[i - 1] * base2;
for (rg int k = 0; k < 7; ++k) {
for (rg int i = 1; i <= n; ++i) for (rg int j = 1; j <= n; ++j) h[k][i][j] += h[k][i - 1][j] * base1;
for (rg int i = 1; i <= n; ++i) for (rg int j = 1; j <= n; ++j) h[k][i][j] += h[k][i][j - 1] * base2;
}
printf("%d %d %d %d %d\n", solve(check_8), solve(check_90), solve(check_4), solve(check_180), solve(check_diag));
return 0;
}

「JSOI2015」symmetry的更多相关文章

  1. 「JSOI2015」串分割

    「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然 ...

  2. 「JSOI2015」isomorphism

    「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不 ...

  3. 「JSOI2015」地铁线路

    「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路 ...

  4. 「JSOI2015」染色问题

    「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示 ...

  5. 「JSOI2015」圈地

    「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于 ...

  6. 「JSOI2015」最小表示

    「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个 ...

  7. 「JSOI2015」套娃

    「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \ ...

  8. 「JSOI2015」非诚勿扰

    「JSOI2015」非诚勿扰 传送门 我们首先考虑一名女性选中她列表里第 \(x\) 名男性的概率(假设她列表里共有 \(s\) 名男性): \[ P = p \times (1 - p) ^ {x ...

  9. 「JSOI2015」salesman

    「JSOI2015」salesman 传送门 显然我们为了使收益最大化就直接从子树中选大的就好了. 到达次数的限制就是限制了可以选的子树的数量,因为每次回溯上来都会减一次到达次数. 多种方案的判断就是 ...

随机推荐

  1. 刷题76. Minimum Window Substring

    一.题目说明 题目76. Minimum Window Substring,求字符串S中最小连续字符串,包括字符串T中的所有字符,复杂度要求是O(n).难度是Hard! 二.我的解答 先说我的思路: ...

  2. js前端模块化的前世今生

    前言: <!DOCTYPE html> <html> <head> <title></title> </head> <sc ...

  3. ReLU(inplace=True),这里的inplace=true的意思

    ReLU(inplace=True),这里的inplace=true的意思 待办 inplace=True means that it will modify the input directly, ...

  4. 回顾 Monty Hall (三门问题)

    一.问题描述 Monty Hall Problem 源于美国的一档电视节目<Let's Make a Deal>,其中Monty Hall 是这个节目的主持人. 节目中有三扇门1.2.3, ...

  5. 2019牛客竞赛第六场D Move 宏观单调,部分不单调

    Move 题意 有k个体积相同的箱子,有个憨憨有固定的装箱策略,每次都只装可以装的重量中最大的东西,求箱子的最小提及 分析 看起来可以二分,但由于他的装箱策略有点蠢,所以只在宏观上满足单调性,在特别小 ...

  6. OrCAD 仿真与仿真模块库介绍

    PSpice A/D9.1个别时候可能会出现异常现象,例如:某一步后,突然电路图的电源极性被自动改变了!造成直流电压和直流电流不正常,输出无波形.所以应该趁正常的时候做好备份是明智的. PSpice ...

  7. ORA-04089: cannot create triggers on objects owned by SYS

    04089 问题原因 因为你在以sys用户创建触发器,但oracle却不建议在sys用户下创建触发器.

  8. ORA_12514:TNS:listener does not currently know of service requested in connect descriptor

    问题描述 ORA_12514:TNS:listener does not currently know of service requested in connect descriptor 解决方式 ...

  9. TD - 数据验证

    基本方法 this.assetCounts.focus();//聚焦 this.btnSave.cancel();//按钮取消 this.assetPerson.isValid()//是否有效,tru ...

  10. Redis 要学的

    https://www.cnblogs.com/kismetv/p/8654978.html#t21 各个类型底层原理 慢查询 pipeline BitMaps 发布订阅 主从复制 psync psy ...