大意:给定n元素序列$a$, $1\le a_i \le n$, 定义函数$f(l,r)$表示范围在$[l,r]$以内的数构成的连通块个数, 求$\sum\limits_{i=1}^{n}\sum\limits_{j=i}^{n}f(i,j)$

对于序列$a$中一个区间$[l,r]$, 假设最小值$mi$, 最大值$ma$, 它要想构成一个连通块的充要条件是$a[l-1],a[r+1]$不在$[mi,ma]$范围内, 可以得到贡献为$mi(n-ma+1)$. 但是显然不能暴力枚举所有区间, 我们可以枚举合法区间的右端点来计算.

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e6+10;
int n, m, k, t;
int a[N]; int main() {
scanf("%d", &n);
REP(i,1,n) scanf("%d", a+i);
ll ans = (ll)a[n]*(n-a[n]+1);
REP(i,1,n-1) {
if (a[i]<a[i+1]) ans+=(ll)a[i]*(a[i+1]-a[i]);
else ans+=(ll)(a[i]-a[i+1])*(n-a[i]+1);
}
printf("%lld\n", ans);
}

Codefores 1151E Number of Components的更多相关文章

  1. CodeForces 1151E Number of Components

    题目链接:http://codeforces.com/problemset/problem/1151/E 题目大意: n个人排成一个序列,标号为 1~n,第 i 个人的学习成绩为 ai,现在要选出学习 ...

  2. 【CF1151E】Number of Components

    [CF1151E]Number of Components 题面 CF 题解 联通块个数=点数-边数. 然后把边全部挂在较小的权值上. 考虑从小往大枚举左端点,等价于每次删掉一个元素,那么删去点数,加 ...

  3. cf1151e number of components

    很常见的思想:将整体求改为统计每个部分的贡献 本题中统计[l, r]时, 每个连通块有一个重要特征, 最右端的数在[l,r]中而下一个数不在(好像是句废话 那么我们分别考虑每个点对连通块的贡献, 即它 ...

  4. [CF1303F] Number of Components - 并查集,时间倒流

    有一个 \(n \times m\) 矩阵,初态下全是 \(0\). 如果两个相邻元素(四连通)相等,我们就说它们是连通的,且这种关系可以传递. 有 \(q\) 次操作,每次指定一个位置 \((x_i ...

  5. Codeforces1303F Number of Components

    Description link 题意:给一个全\(0\)矩阵,每次支持一个修改,修改不还原(这要是还原了不就成\(A\)题了) 然后询问每一次修改完了当前矩阵的连通块个数 每一个修改的值单调不降 修 ...

  6. Codeforces 1270H - Number of Components(线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 首先需发现一个性质,那就是每一个连通块所对应的是一个区间.换句话说 \(\forall l<r\),若 \(l,r\) 在同一连通块 ...

  7. [翻译]Writing Custom Report Components 编写自定义报表组件

    摘要:简单介绍了如何编写一个FastReport的组件,并且注册到FastReport中使用.   Writing Custom Report Components 编写自定义报表组件 FastRep ...

  8. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

  9. SDWebImage源码解读_之SDWebImageDecoder

    第四篇 前言 首先,我们要弄明白一个问题? 为什么要对UIImage进行解码呢?难道不能直接使用吗? 其实不解码也是可以使用的,假如说我们通过imageNamed:来加载image,系统默认会在主线程 ...

随机推荐

  1. 【做题】agc006C - Rabbit Exercise——模型转换

    原文链接https://www.cnblogs.com/cly-none/p/9745177.html 题意:数轴上有\(n\)个点,从\(1\)到\(n\)编号.有\(m\)个操作,每次操作给出一个 ...

  2. (转) RNN models for image generation

    RNN models for image generation MARCH 3, 2017   Today we’re looking at the remaining papers from the ...

  3. Vue.extend提供自定义组件的构造器

    Vue.extend 返回的是一个“扩展实例构造器”,也就是预设了部分选项的Vue实例构造器.经常服务于Vue.component用来生成组件,可以简单理解为当在模板中遇到该组件名称作为标签的自定义元 ...

  4. Unity3D学习笔记(三十三):矩阵

    矩阵 矩阵就是一行和列组织起来的矩形数字块. 矩阵可以理解为是向量的数组.   矩阵的维度和记法 矩阵的维度是包含多少行多少列!例如1行2列的矩阵 记法:矩阵m中,对于第1行第2列的元素,我们记为m1 ...

  5. 【C#】 Method invocation is skipped

    相信大家看到这个标题也是一头雾水了. 这个问题主要是我在项目中遇到了一个问题, 然后我通过搜索引擎搜索的关键词进而找到了answer, 我先描述一下我遇到的问题: 做项目的时候我发现log时常没有输出 ...

  6. Docker5之Deploy your app

    Make sure you have published the friendlyhello image you created by pushing it to a registry. We’ll ...

  7. 转载:mysql存储过程讲解

    记录MYSQL存储过程中的关键语法: DELIMITER // 声明语句结束符,用于区分; CEATE PROCEDURE demo_in_parameter(IN p_in int) 声明存储过程 ...

  8. Java 基础功底

    Java 基础语法特性: 首先了解并做好Java Web 开发环境配置(包含 JDK 的配置)是非常必要的.其中 CLASSPATH 的值开始必须包含 ".",否则用 javac ...

  9. JavaScript深入

    BOM(浏览器对象模型)——与浏览器对话: Window对象(代表浏览器的窗口——不包括工具栏.滚动条): //所有全局对象.全局函数,均自动成为window对象的成员(document属于浏览器,所 ...

  10. 转一篇 ShaderVariantCollection介绍的比较详细的文章 感谢作者

    http://www.seven-fire.cn/archives/174 Unity3D Shader加载时机和预编译 焱燚(七火)  |    2016年7月6日  |   UnityShader ...